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Auditory Scene Analysis

 

What does our sense of hearing do?

 

- recover useful information 
... about objects of interest
... in a wide range of circumstances

 

Measuring objects in an auditory scene:
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Subjective analysis 
of auditory scenes

 

• Subjects identify structures in dense scenes 
with high agreement
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Auditory Scene Analysis (ASA)

 

“The organization of sound scenes 
according to their inferred sources”

• Real-world sounds rarely occur in isolation

 

→

 

a useful sense of hearing must be able to 
segregate mixtures

- people (and ...) do this very well;
unexpectedly difficult to model

- depends on:
  subjective definition of relevant sources
  regularity/constraints of real-world sounds

 

• Studied via experimental psychology

 

- characterize ‘rules’ for organizing simple pieces
(tones, noise bursts, clicks)
i.e. ‘reductive’ approach
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Computational Auditory Scene Analysis
(CASA)

 

• Psychological ‘rules’ suggest computer 
implementation

 

- .. but many practical problems arise!

 

• Motivations:
Practical applications

 

- real-world interactive systems
- indexing of media databases
- hearing prostheses

 

Crossover opportunities

 

- unknown signal/information processing 
principles?

 

Benefits for theory

 

- implementations are very revealing
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The grouping paradigm

 

• Standard theory of ASA (Bregman, Darwin &c):

 

- sound mixture is broken up into small elements 
e.g. time-frequency ‘cells’

- each element has a number of feature 
dimensions (amplitude, ITD, period)

- elements are grouped together according to their 
features to form larger structures

- resulting groups have overall attributes (pitch, 
location)

 

(from Darwin 1996)
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Marr’s levels-of-explanation
of  information processing

 

• Three distinct aspects to info. processing

Why bother?

 

- to help organize understanding
- avoid confusion/wasted effort

 

→

 

use as an analysis tool...

 

Computational 
Theory

 

‘what’ and ‘why’; 
the overall goal

Sound 
source 

organization

 

Algorithm

 

‘how’;
 an approach to 
meeting the goal

Auditory 
grouping

 

Implementation

 

practical 
realization of the 

process.

Feature 
calculation & 

binding
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Level 1: Computational theory

 

• The underlying regularities that make the 
problem possible

 

- i.e. the ‘ecological’ facts

 

• Implicit definition of “what is a source?”:
  Independence

 

 of attributes between sources

 

  Continuity

 

 of attributes for each source

+ other source-specific constraints
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Level 2: Algorithm

 

• A particular approach to exploiting the 
constraints of the computational theory

 

- both process & representation

 

• Audition: 
the “elements-then-grouping” approach

 

- could have been otherwise e.g. templates

 

• Often the focus of analysis

 

- but: debate is muddled without a clear 
computational theory
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Level 3: Implementation

 

• A specific realization of the algorithm

 

- computer programs
- neurons
- ...

 

• Can be analyzed separately?

 

- provided epiphenomena are correctly assigned

 

• Needs context of algorithm , 
computational theory

 

“You cannot understand stereopsis simply by 
thinking about neurons”
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The advantage of the appropriate level

 

• Computational theory

 

- determines the purpose of the process;
provides focus necessary for analysis

e.g. biosonar: benefit of hyperresolution

 

• Algorithm

 

- abstraction that is still specific, transferable
e.g. autocorrelation for pitch

 

• Implementation

 

- explain ‘epiphenomena’
e.g. ‘subjective octave’ from refractory period
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An example: Neural inhibition

 

Computational 
theory

 

Frequency-
domain 

processing

 

Algorithm

 

Discrete-time 
filtering

(subtraction)

 

Implementation

 

Neurons with 
GABAergic 
inhibitions

f

X(f)
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Summary 

 

• Acoustic scenes are very complex

• .. but the auditory system extracts useful 
information

• Grouping is the main focus of Auditory Scene 
Analysis

• .. but it fits into a larger Marrian framework

1
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Cues to grouping

 

• Common onset/offset/modulation (“fate”)

• Common periodicity (“pitch”)

• Spatial location (ITD, ILD, spectral cues)

• Sequential cues...

• Source-specific cues...

 

Common onset Periodicity

Computational 
theory

 

Acoustic 
consequences tend 
to be synchronized

(Nonlinear) cyclic 
processes are 

common

 

Algorithm

 

Group elements that 
start in a time range 

? Place patterns
? Autocorrelation 

 

Implementation

 

Onset detector cells
Synchronized osc’s?

? Delay-and-mult
? Modulation spect
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Simple grouping

 

• E.g. isolated tones

Computational 
theory

 

• common onset
• common period (harmonicity)

 

Algorithm

 

• locate elements (tracks)
• group by shared features

 

Implementation

 

? exhaustive search
• evolution in time

time

freq
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Computer models of grouping

 

• “Bregman at face value” (e.g. Brown 1992):

 

- feature maps
- periodicity cue
- common-onset boost
- resynthesis

input
mixture

signal
features

(maps)

discrete
objects

Front end Object
formation

Grouping
rules

Source
groups

onset

period

frq.mod

time

freq
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Grouping model results

 

• Able to extract voiced speech:

• Periodicity is the primary cue

 

- how to handle aperiodic energy?

 

• Limitations

 

- resynthesis via filter-mask
-

 

only

 

 periodic targets
- robustness of discrete objects
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Complications for grouping:
1: Cues in conflict

 

• Mistuned harmonic (Moore, Darwin..):

 

- harmonic usually groups by onset & periodicity
- can alter frequency and/or onset time
- ‘degree of grouping’ from overall pitch match

 

• Gradual, various results:

 

- heard as separate tone, still affects pitch

time

freq

3%
mistuning

pitch shift
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Complications for grouping:
2: The effect of time

 

• Added harmonics:

 

- onset cue initially segregates;
periodicity eventually fuses

 

• The effect of time

 

- some cues take time to become apparent
- onset cue becomes increasingly distant...

 

• What is the impetus for fission?

 

- e.g. double vowels
- depends on what you expect .. ?

time

freq
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Summary 

• Known grouping cues make sense

• Simple examples are straightforward

• Models can be implemented directly

• .. but problematic situations abound

2
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The effect of context

• Context can create an ‘expectation’: 
i.e. a bias towards a particular interpretation

• e.g. Bregman’s “old-plus-new” principle:
A change in a signal will be interpreted as an 
added source whenever possible

- a different division of the same energy 
depending on what preceded it

+

time/s

freq/kHz

0.0 0.4 0.8

1

2

1.2
0
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Streaming

• Successive tone events form separate streams

• Order, rhythm &c within , not between , streams

Computational 
theory

Consistency of properties for 
successive source events

Algorithm
• ‘expectation window’ for known 

streams (widens with time)

Implementation
• competing time-frequency 

affinity weights...

±2 octaves

TRT: 60-150 ms

time

freq.

∆f:
1 kHz
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Restoration & illusions

• Direct evidence may be masked or distorted
→make best guess using available information

• E.g. the ‘continuity illusion’:

- tones alternates with noise bursts
- noise is strong enough to mask tone

... so listener discriminate presence
- continuous tone distinctly perceived

for gaps ~100s of ms

→ Inference acts at low, preconscious level

1000

2000

4000

f/Hz ptshort

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time/s
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Speech restoration

• Speech provides very strong bases for 
inference (coarticulation, grammar, semantics):
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• Phonemic 
restoration

• Sinewave 
speech 
(duplex?)

• Temporal 
compounds
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Models of top-down processing

Perception as a search  for plausible explanations

• ‘Prediction-driven’ CASA (PDCASA):

• An approach as well as an implementation...

• Key features:
- ‘complete explanation’ of all scene energy
- vocabulary of periodic/noise/transient elements
- multiple hypotheses
- explanation hierarchy

input
mixture

signal
features

prediction
errors

hypotheses

predicted
featuresFront end Compare

& reconcile

Hypothesis
management

Predict
& combinePeriodic

components

Noise
components
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PDCASA for old-plus-new

• Incremental analysis
t1 t2 t3

Input signal

Time t1:
initial element 
created

Time t2:
Additional 
element required

Time t3:
Second element 
finished
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PDCASA for the continuity illusion

• Subjects hear the tone as continuous
... if the noise is a plausible masker

• Data-driven analysis gives just visible portions:

• Prediction-driven can infer masking:
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PDCASA analysis of a complex scene
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Marrian analysis of PDCASA

• Marr invoked to separate high-level function 
from low-level details

“It is not enough to be able to describe the response of single 
cells, nor predict the results of psychophysical experiments.
Nor is it enough even to write computer programs that perform 
approximately in the desired way: 
One has to do all these things at once, and also be very aware 
of the computational theory...”

Computational 
theory

• Objects persist predictably
• Observations interact irreversibly

Algorithm
• Build hypotheses from generic 

elements
• Update by prediction-reconciliation

Implementation ???
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Summary 

• Perceptual processing is highly 
context-dependent

• Auditory system will use prior knowledge 
to fill-in gaps (subconsciously)

• Prediction-reconciliation models can 
encompass this behavior

3
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The current state of ASA and CASA

• ASA
- detailed descriptions of “in vitro” tests
- some quite subtle effects explained (DV beats)
but: how to extend to complex scenarios?

• CASA
- numerous models, some convergence

(mainly periodicity-based)
- best results sound impressive

(least plausible systems!)
- applications in speech recognition?
but: domains limited, poor robustness
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Big issues in CASA:

• Plausibility
- correct level for human correspondence?
- which phenomena are important to match?
- how to implement symbolic-style processing?

• Top-down vs. bottom-up
- different approaches to ambiguity, latency
- how far down for top-down?
- how far ‘up’ for high level?
- choice between extraction & inference?

• Integrating multiple cues (e.g. binaural)

• Other debates:
- what is the real goal?
- resynthesis
- evaluation
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Big issues in ASA & CASA:

• Knowledge:
how to acquire, represent & store ...
- short-term: context
- long-term: memories
- abstract: classes, generalities

• Attention:
- what does it mean in these models?
- limitation or important principle?
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Conclusions

• Real-world sounds are complex;
scene-analysis is required

• We know certain cues & some rules, 
but real situations raise contradictions

• Current models handle ‘obvious’ cases;
robustness & generality are hard

• Many issues remain
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Discussion points

• Are Marr’s levels important? Useful?
Can you study levels in isolation?

• What do restoration phenomena imply about 
internal representations?

• Do we have an adequate account of an ASA 
algorithm? e.g. where do hypotheses come 
from?

• How important/challenging are phenomena like 
duplex perception, sinewave speech etc.?


