Handling Speech in the Wild

Dan Ellis

Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Eng., Columbia University, NY

and

International Computer Science Institute, Berkeley CA

dpwe@ee.columbia.edu

http://labrosa.ee.columbia.edu/

- Speech in the Wild
 Separation by Space & Pitch
 Separation by Source Model
- 4. Inharmonic Speech

LabROSA Overview

- The world is cluttered sound is transparent
 mixtures are inevitable
- Useful information is structured by 'sources'
 specific definition of a 'source': intentional independence

Speech in the Wild: Examples

Multi-party discussions

- Ambient recordings
- Applications:
 communications

robots
 lifelogging/archives

Speech in the Wild - Dan Ellis

2012-10-05 4/32

Recognizing Speech in the Wild

Current ASR relies on low-D representations e.g. 13 dimensional MFCC features every 10ms

 very successful for clean speech!
 inadequate for mixtures

• We need separation!

Speech Separation

• How can we separate speech information?

Approaches to Separation

ICA

- Multi-channel
- Fixed filtering
- Perfect separation
 maybe!

CASA

- Single-channel
- Time-var. filter
- Approximate separation

Model-Based

- Any domain
- Param. search
- Synthetic output?

Separation vs. Inference

- Ideal separation is rarely possible
 many situations where overlaps cannot be removed
- Overlaps → Ambiguity
 o scene analysis = find "most reasonable" explanation
- Ambiguity can be expressed probabilistically • i.e. posteriors of sources $\{S_i\}$ given observations X: $P(\{S_i\}|X) \propto P(X|\{S_i\}) \prod_i P(S_i|M_i)$

• search over all source signal sets $\{S_i\}$??

• Better source models $M_i \rightarrow$ better inference

2. Separation by Spatial Info

- Given multiple microphones, sound carries spatial information about source
- E.g. model interaural spectrum of each source as stationary level and time differences:

$$\frac{L(\omega,t)}{R(\omega,t)} = \frac{a(\omega)e^{j\omega\tau}N(\omega,t)}{\omega\tau}$$

e.g. at 75°, in reverb:

Model-based EM Source Separation and Localization (MESSL)

Mandel et al. '10

• can model more sources than sensors

Speech in the Wild - Dan Ellis

2012-10-05 10/32

MESSL Results

Modeling uncertainty improves results
 tradeoff between constraints & noisiness

EM+1ILD (tied means)

DUFT

-2.72 dB

Ground Truth

Helps with recognition
 digits accuracy

Separation by Pitch

• Voiced syllables have near-periodic "pitch"

Brungart et al.'01

Can we track pitch & use it for separation?
 ... and other speech tasks?

SAcC Pitch Tracking

BS Lee & Ellis '12

Based on channel selection Wu, Wang & Brown '03
 pitch from summary autocorrelation finds ''good'' bands

trained classifier decides pitch from evidence
Subband Autocorrelation Classification = SAcC

Subband Autocorrelation PCA

 Subband Autocorrelation is high-dimensional
 e.g. 24 subbands × 200 lags
 each subband's autocorrelation is highly redundant

- Represent with PCA
 - 10 bases sufficient

• bases don't much depend on training data

Trained Pitch Classifier

- Core of SAcC is MLP Classifier trained on noisy audio
 + ground-truth pitch to output one pitch bin per frame
 - discriminates against e.g. octave errors

SAcC Results

- SAcC exploits in-domain data to do better than "general purpose" pitch trackers
 - generalization...

Speech in the Wild - Dan Ellis

2012-10-05 16/32

3. Separation by Models

Roweis '01, '03 Kristjannson '04, '06

 Given models (codebooks) for sources, find "best" (most likely) states *i* for spectra:

$$P(\mathbf{x}|i_1, i_2) = \mathcal{N}(\mathbf{x}; \mu_{i_1} + \mu_{i_2}, \Sigma) \qquad \begin{array}{c} \text{combination} \\ \text{model} \end{array}$$
$$\{i_1(t), i_2(t)\} = \arg \max_{i_1, i_2} P(\mathbf{x}(t)|i_1, i_2) \qquad \begin{array}{c} \text{inference} \\ \text{inference} \\ \text{source state} \end{array}$$

- can include sequential constraints...
- E.g. stationary noise:

Separation by ASR Models

Varga & Moore, '90 Hershey et al., '10

- If ASR is finding best-fit parameters argmax P(W | X) ...
- Recognize mixtures with Factorial HMM
 model + state sequence for each voice/source
 exploit sequence constraints, speaker differences

• separation relies on detailed speaker model

IBM "Superhuman" System

Kristjansson, Hershey et al. '06, '10 Iroquois speech separation system features:

- detailed state combinations
- large speech recognizer
- exploits grammar constraints
- 34 per-speaker models
- "Superhuman" performance • ... in some conditions

Eigenvoices

Kuhn et al. '98, '00 Weiss & Ellis '10

- Idea: Find speaker model parameter space
 - generalize without losing detail?

• Eigenvoice model:

 μ = $ar{\mu}$ + U

adapted model mean eigenvoice voice bases

weights

W

channel channel bases weights

h

B

• 89,600 dimensional space

Eigenvoice Speech Separation

Weiss & Ellis '10

 Factorial HMM analysis with tuning of source model parameters
 = eigenvoice speaker adaptation

Eigenvoice Speech Separation

Speech in the Wild - Dan Ellis

2012-10-05 22/32

Eigenvoice Speech Separation

• Eigenvoices for Speech Separation task

 speaker adapted (SA) performs midway between speaker-dependent (SD) & speaker-indep (SI)

Enhancement by Synthesis

- Current speech synthesizers use ASR-like acoustic models
- Enhance noisy speech by partial recognition then speech synthesis ("copying")
- A novel kind of distortion...

Parametric Speech Models: Pitch

- Ravuri & Ellis '08
- Segment into "syllable-like" units by energy
- Model pitch in each syllable as simple line

Parametric Speech: TF Envelope

- Use STRAIGHT for high-quality time-frequency envelope for each syllable
- Build codebook from duration-normalized TFEs

4. Inharmonic Speech

McDermott, Ellis, Kawahara '12

- Harmonicity is cited as cue for fusion
- Voiced speech has...
 - multiple (resolved) harmonics = "sparse" spectrum
 with similar modulation properties
- How important is the "harmonic pattern"?

Inharmonic Speech

Speech in the Wild - Dan Ellis

2012-10-05 28/32

Synthesizing Inharmonic Speech

• Based on STRAIGHT

Kawahara 1999, 2006 ...

• decompose speech into:

- f₀ (pitch track)
- periodic envelope (voiced speech)
- noise envelope (unvoiced speech component)

STRAIGHT Synthesis

• STRAIGHT periodic source resynthesis

- ... as individual pitch pulses
- ... or as a set of Fourier components
 - which can be made inharmonic

Results

Harmonic tokens a little easier to understand
but inharmonic tokens much better than whispered
different types of inharmonicity seem equivalent
Spectral sparsity is a big contributor to separation?

Summary

- Speech in the Wild
 - ... real, challenging problem
 - ... applications in communications, lifelogs ...
- Speech Separation

 ... by generic properties (location, pitch)
 ... via source models
- Inharmonic Speech

... 'natural' speech with inharmonic excitation

