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LabROSA Overview
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1. Speech in the Wild
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• The world is cluttered
 sound is transparent
mixtures are inevitable

• Useful information is structured by ‘sources’
specific definition of a ‘source’:
intentional independence
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Speech in the Wild: Examples

• Multi-party 
discussions

• Ambient 
recordings

• Applications:
communications    o  robots    o lifelogging/archives
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Recognizing Speech in the Wild
• Current ASR relies on low-D representations

e.g. 13 dimensional MFCC features every 10ms

• We need separation!
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Speech Separation
• How can we separate speech information?
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Approaches to Separation
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Separation vs. Inference
• Ideal separation is rarely possible

many situations where overlaps cannot be removed

• Overlaps → Ambiguity
scene analysis = find “most reasonable” explanation

• Ambiguity can be expressed probabilistically
i.e. posteriors of sources {Si} given observations X:

search over all source signal sets {Si} ??

• Better source models Mi → better inference
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P ({Si}|X) � P (X|{Si})
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2. Separation by Spatial Info
• Given multiple microphones, 

sound carries spatial information about source
• E.g. model interaural spectrum of each source

as stationary level and time differences:

• e.g. at 75°, in reverb:
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Model-based EM Source Separation 
and Localization (MESSL)

can model more sources than sensors
10

Mandel et al. ’10

Assign spectrogram points
to sources

Re-estimate
source parameters
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MESSL Results
• Modeling uncertainty improves results

tradeoff between constraints & noisiness
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Separation by Pitch
• Voiced syllables have near-periodic “pitch”

perceptually salient

lost in MFCCs

• Can we track pitch & use it for separation?
... and other speech tasks?
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SAcC Pitch Tracking
• Based on channel selection Wu, Wang & Brown ’03

pitch from summary autocorrelation finds “good” bands

13

trained classifier decides pitch from evidence
Subband Autocorrelation Classification = SAcC

BS Lee & Ellis ’12
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Subband Autocorrelation PCA
• Subband Autocorrelation 

is high-dimensional
e.g. 24 subbands x 200 lags
each subband’s autocorrelation 
is highly redundant
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Trained Pitch Classifier
• Core of SAcC is MLP Classifier

trained on noisy audio 
+ ground-truth pitch 
to output one pitch 
bin per frame

discriminates against
e.g. octave errors
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SAcC Results
• SAcC exploits in-domain data to do better than 

“general purpose” pitch trackers
generalization...
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3. Separation by Models
• Given models (codebooks) for sources, 

find “best” (most likely) states i for spectra:

can include sequential constraints...

• E.g. stationary noise:
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Separation by ASR Models
• If ASR is finding best-fit parameters  

argmax P(W | X) ...
• Recognize mixtures with Factorial HMM

model + state sequence for each voice/source
exploit sequence constraints, speaker differences

separation relies on detailed speaker model
18

Varga & Moore, ’90
Hershey et al., ’10

model 1

model 2 

observations / time
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IBM “Superhuman” System
• Iroquois speech separation system features:

detailed state combinations
large speech recognizer
exploits grammar constraints
34 per-speaker models

• “Superhuman” performance
... in some conditions
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Kristjansson, Hershey et al. ‘06, ’10
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ABSTRACT

We present a framework for speech enhancement and ro-
bust speech recognition that exploits the harmonic structure
of speech. We achieve substantial gains in signal to noise ra-
tio (SNR) of enhanced speech as well as considerable gains
in accuracy of automatic speech recognition in very noisy
conditions.

The method exploits the harmonic structure of speech
by employing a high frequency resolution speech model in
the log-spectrum domain and reconstructs the signal from
the estimated posteriors of the clean signal and the phases
from the original noisy signal.

We achieve a gain in signal to noise ratio of 8.38 dB for
enhancement of speech at 0 dB. We also present recognition
results on the Aurora 2 data-set. At 0 dB SNR, we achieve
a reduction of relative word error rate of 43.75% over the
baseline, and 15.90% over the equivalent low-resolution al-
gorithm.

1. INTRODUCTION

A long standing goal in speech enhancement and robust
speech recognition has been to exploit the harmonic struc-
ture of speech to improve intelligibility and increase recog-
nition accuracy.

The source-filter model of speech assumes that speech
is produced by an excitation source (the vocal cords) which
has strong regular harmonic structure during voiced phonemes.
The overall shape of the spectrum is then formed by a fil-
ter (the vocal tract). In non-tonal languages the filter shape
alone determines which phone component of a word is pro-
duced (see Figure 2). The source on the other hand intro-
duces fine structure in the frequency spectrum that in many
cases varies strongly among different utterances of the same
phone.

This fact has traditionally inspired the use of smooth
representations of the speech spectrum, such as the Mel-
frequency cepstral coefficients, in an attempt to accurately
estimate the filter component of speech in a way that is in-
variant to the non-phonetic effects of the excitation[1].

There are two observations that motivate the consider-
ation of high frequency resolution modelling of speech for
noise robust speech recognition and enhancement. First is
the observation that most noise sources do not have har-
monic structure similar to that of voiced speech. Hence,
voiced speech sounds should be more easily distinguish-
able from environmental noise in a high dimensional signal
space1.
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Fig. 1. The noisy input vector (dot-dash line), the corre-
sponding clean vector (solid line) and the estimate of the
clean speech (dotted line), with shaded area indicating the
uncertainty of the estimate (one standard deviation). Notice
that the uncertainty on the estimate is considerably larger in
the valleys between the harmonic peaks. This reflects the
lower SNR in these regions. The vector shown is frame 100
from Figure 2

A second observation is that in voiced speech, the signal
power is concentrated in areas near the harmonics of the
fundamental frequency, which show up as parallel ridges in

1Even if the interfering signal is another speaker, the harmonic structure
of the two signals may differ at different times, and the long term pitch
contour of the speakers may be exploited to separate the two sources [2].
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Eigenvoices
• Idea:  Find 

speaker model 
parameter space

generalize without 
losing detail?

• Eigenvoice model:

89,600 dimensional space
20

Kuhn et al. ’98, ’00
Weiss & Ellis ’10
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Eigenvoice Speech Separation
• Factorial HMM analysis

with tuning of source model parameters 
= eigenvoice speaker adaptation

21

Weiss & Ellis ’10
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Eigenvoice Speech Separation

22
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Eigenvoice Speech Separation
• Eigenvoices for Speech Separation task

speaker adapted (SA) performs midway between 
speaker-dependent (SD) & speaker-indep (SI)

23
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Enhancement by Synthesis
• Current speech synthesizers use 

ASR-like acoustic models

• Enhance noisy speech 
by partial recognition
then speech synthesis 
(“copying”)

• A novel kind 
of distortion...
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Parametric Speech Models: Pitch
• Segment into “syllable-like” units by energy
• Model pitch in each syllable as simple line

25

Ravuri & Ellis ’08
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Parametric Speech: TF Envelope
• Use STRAIGHT for high-quality time-frequency 

envelope for each syllable
• Build codebook from duration-normalized TFEs

26
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4. Inharmonic Speech
• Harmonicity is cited as cue for fusion
• Voiced speech has...

multiple (resolved) harmonics = “sparse” spectrum
.. with similar modulation properties

• How important is the “harmonic pattern”?
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Inharmonic Speech
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Synthesizing Inharmonic Speech
• Based on STRAIGHT

decompose speech into:
- f0 (pitch track)
- periodic envelope (voiced speech)
- noise envelope (unvoiced speech component)
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STRAIGHT Synthesis
• STRAIGHT periodic source resynthesis

... as individual pitch pulses

... or as a set of Fourier components
- which can be made inharmonic
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Results
• Harmonic tokens a little easier to understand

but inharmonic tokens much better than whispered
different types of inharmonicity seem equivalent
Spectral sparsity is a big contributor to separation?
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Summary
• Speech in the Wild

... real, challenging problem

... applications in communications, lifelogs ...

• Speech Separation
... by generic properties (location, pitch)
... via source models

• Inharmonic Speech
... ‘natural’ speech with inharmonic excitation
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Separation vs. Recognition

33
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