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• Central operation:
- continuous sound mixture 

→ distinct objects & events

• Perceptual impression is very strong
- but hard to ‘see’ in signal
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“Imagine two narrow channels dug up from the edge
lake, with handkerchiefs stretched across each one
Looking only at the motion of the handkerchiefs, yo
to answer questions such as: How many boats are 
on the lake and where are they?”   (after Bregman’90

• Received waveform is a mixture
- two sensors, N signals ...

• Disentangling mixtures as primary goal
- perfect solution is not possible
- need knowledge-based constraints
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• A sense of hearing is evolutionarily useful
- gives organisms ‘relevant’ information

• Auditory perception is ecologically groun
- scene analysis is preconscious (→ illusio
- special-purpose processing reflects 

‘natural scene’ properties
- subjective not canonical (ambiguity)
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• Sound ‘scene ’ is almost always a mixture
- always stuff going on
- sound is ‘transparent’ 

• Need information related to our ‘world mo
- i.e. separate objects
- a wolf howling in a blizzard is the same a

a wolf howling in a rainstorm
- whole-signal statistics won’t do this

• ‘Separateness ’ is similar to independence
- objects/sounds that change in isolation
- but: depends on the situation e.g.

passing car vs. mechanic’s diagnosis

Time

F
re

qu
en

cy

0 0.5 1
0

1000

2000

3000

4000

Time0 0.5 1 0 0.5

Speech Noise Speech+No

+ =



  

Lab
ROSA

  

Vision and hearing

    

ns
und
CASA @ ICTP - Dan Ellis 2001-08-09 - 7

• Hearing and seeing are complementary
- hearing is omindirectional
- hearing works in the dark

• Reveal different things about the world
- vision is good for examining static situatio
- physical motion almost always makes so
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Marr ’s levels-of-explanation

• Three distinct aspects to info. processing

Why bother? - helps organize interpretatio
- it’s OK to consider levels 
  separately, one at a time

Computational 
Theory

‘what’ and ‘why’; 
the overall goal

Sou
sou

organi

Algorithm
‘how’;

 an approach to 
meeting the goal

Aud
grou

Implementation
practical 

realization of the 
process.

Fea
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bind
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Computational 
theory

Frequency-
domain 

processing

Algorithm
Discrete-time 

filtering
(subtraction)

Implementation
Neurons with 
GABAergic 
inhibitions

X(f)
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Sound organization

Human Auditory Scene Analysis (ASA)
- experimental psychoacoustics
- grouping and cues
- perception of complex scenes

Computational ASA (CASA)

CASA issues & applications
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• “Auditory Scene Analysis ” [Bregman 199
- break mixture into small elements (in tim
- elements are grouped in to sources using
- sources have aggregate attributes

• Grouping ‘rules ’ (Darwin, Carlyon, ...):
- cues: common onset/offset/modulation, 

harmonicity, spatial location, ...

(from
Darw
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• Common attributes and ‘fate ’

• + Spatial location (ITD, ILD, spectral)... 

Common onset Periodicit

Computational 
theory

Acoustic 
consequences tend 
to be synchronized

(Nonlinear)
processes

commo

Algorithm
Group elements that 
start in a time range 

Place patt
Autocorrela

Implementation
Onset detector cells
Synchronized osc’s?

Delay-and-
Modulation 

time
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1: Cues in con flict

• Mistuned harmonic (Moore, Darwin..):

- determine how ∆t and ∆f affect 
• segregation of harmonic
• pitch of complex

• Gradual, various results:

http://www.dcs.shef.ac.uk/~martin/MAD/docs/mad.h

time
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mistuning
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2: The effect of time

• Added harmonics:

- onset cue initially segregates;
periodicity eventually fuses

• The effect of time
- some cues take time to become apparen
- onset cue becomes increasingly distant..

• What is the impetus for fission?
- e.g. double vowels
- depends on what you expect .. ?

time

freq
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• Successive tone events form separate stre

• Order, rhythm &c within, not between, st

Computational 
theory

Consistency of properties for 
successive source events

Algorithm
• ‘expectation window’ for know

streams (widens with time)

Implementation
• competing time-frequency 

affinity weights...

±2 octaves

TRT: 60-150 ms

time

freq.

∆f:
1 kHz
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• Context can create an ‘expectation ’: 
i.e. a bias towards a particular interpretation

• e.g. Bregman ’s “old-plus-new ” principle:
A change in a signal will be interpreted a
added source whenever possible

- a different division of the same energy 
depending on what preceded it
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• ‘Illusions ’ illuminate algorithm
- what model would ‘misbehave’ this way?

• E.g. the ‘continuity illusion ’:
- making ‘best guess’ for masked informati

- tones alternates with noise bursts
- noise is strong enough to mask tone
- continuous tone distinctly perceived

for gaps ~100s of ms

→ Inference acts at low, preconscious level
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• Speech provides a very strong basis for 
inference (coarticulation, grammar, semant
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Ground truth in complex scenes *
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• What do people hear in sound mixtures?
- do interpretations match?

→ Listening tests to collect ‘perceived events’:
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Sound organization

Human Auditory Scene Analysis (ASA)

Computational ASA (CASA)
- bottom-up models
- top-down predictions
- other approaches

CASA issues & applications
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• Goal: Automatic sound organization ;
Systems to ‘pick out’ sounds in a mixtur
- ... like people do

• E.g. voice against a noisy background
- to improve speech recognition

• Approach:
- psychoacoustics describes grouping ‘rule
- ... just implement them?

CASA
Object 
Object 
Object 
...
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• Correlogram:
Loosely based on known/possible physi

- linear filterbank cochlear approximation
- static nonlinearity
- zero-delay slice is like spectrogram
- periodicity from delay-and-multiply detec

Cochlea
filterbank

sound

envelope
follower

short-time
autocorrelation

delay lin
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(Brown & Cooke 1993)

• Implement psychoacoustic theory

- ‘bottom-up’ processing
- uses common onset & periodicity cues

• Able to extract voiced speech:
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• Circumscribing time-frequency elements
- need to have ‘regions’, but hard to find

• Periodicity is the primary cue
- how to handle aperiodic energy?

• Resynthesis via masked fi ltering
- cannot separate within a single t-f eleme

• Bottom-up leaves no ambiguity or conte
- how to model illusions?

time

freq
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Perception is not direct
but a search for plausible hypotheses

• Data-driven (bottom-up)...

vs. Prediction-driven (top-down) (PDCASA)

• Motivations
- detect non-tonal events (noise & click ele
- support ‘restoration illusions’...

→ hooks for high-level knowledge
+  ‘complete explanation’, multiple hypothe

input
mixture

signal
features

discrete
objects

Front end Object
formation

Grouping
rules

Source
groups

input
mixture

signal
features

prediction
errors

hypotheses

predicted
featuresFront end Compare

& reconcile

Hypothesis
management

Predict
& combinePeriodic

components

Noise
components
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• Goal is a representational space that
- covers real-world perceptual sounds
- minimal parameterization (sparseness)
- separate attributes in separate paramete

• Object hierarchies built on top...
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• Incremental analysis
t1 t2 t3

Input signal

Time t1:
initial eleme
created

Time t2:
Additional 
element req

Time t3:
Second ele
finished
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• Subjects hear the tone as continuous
... if the noise is a plausible masker

• Data-driven analysis gives just visible po

• Prediction-driven can infer masking:
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PDCASA and complex scenes
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• Marr invoked to separate high-level func
from low-level details

“It is not enough to be able to describe the response of 
cells, nor predict the results of psychophysical experime
Nor is it enough even to write computer programs that p
approximately in the desired way: 
One has to do all these things at once, and also be very
of the computational theory...”

Computational 
theory

• Objects persist predictably
• Observations interact irrevers

Algorithm
• Build hypotheses from gener

elements
• Update by prediction-reconci

Implementation ???
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(Bell & Sejnowski etc.)

• General idea:
Drive a parameterized separation algorit
maximize indepdendence of outputs

• Attractions:
- mathematically rigorous, minimal assump

• Problems:
- limitations of separation algorithm (N x N
- essentially bottom-up

m1
m2

s1
s2

a11
a21

a12
a22

x

−δ MutInfo
δa
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(Malsburg, Wang & Brown)

• Locally-excited, globally-inhibited netwo
form separate phases of synchrony

• Advantages:
- avoid implausible AI methods (search, lis
- oscillators substitute for iteration

• Only concerns the implementation level
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Sound organization

Human Auditory Scene Analysis (ASA)

Computational ASA (CASA)

CASA issues & applications
- learning
- missing data
- audio information retrieval
- the machine listener

Summary
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• The speech recognition lesson:
How to exploit large databases?

• ‘Maximum likelihood’ sound organizatio
(e.g. Roweis)

- learn model→sound distributions 
analyzing isolated sound databases

- combine models with physics: 

- learn patterns of model combinations 

- search for most likely combinations of mo
to explain observed sound mixtures

• Short-term learning
- hearing a particular source can alter sho

interpretations of mixtures

P X M(

P X Mi{(

P(

max P Mi{ } X( ) P X Mi{ }( ) P {(⋅=
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(Cooke, Green, Barker... @ Sheffield)

• Energy overlaps in time-freq. hide featur
- some observations are effectively missin

• Use missing feature theory...
- integrate over missing data dimensions x

• Effective in speech recognition
- trick is finding good/bad data mask

p x q( ) p xg xm q,( ) p xm q( ) xmd∫=

"1754" + noise

Missing-data
Recognition

stationary noise estimate

"1754"

Mask based on
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(Jon Barker @ Sheffield)

• Search of sound-fragment interpretation

• CASA for masks/fragments
- larger fragments → quicker search

• Use with nonspeech models?

"1754" + noise

Common Onset/Offset

Multisource
Decoder

Spectro-Temporal Proximity

Mask split into subbands

stationary noise estimate

`Grouping' applied within bands

"1754"

Mask based on
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Audio Information Retrieval *
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• Searching in a database of audio
- speech .. use ASR
- text annotations .. search them
- sound effects library?

• e.g. Muscle Fish “ SoundFisher”  browser
- define multiple ‘perceptual’ feature dimen
- search by proximity in weighted feature s

- features are ‘global’ for each soundfile,
no attempt to separate mixtures 

Segment
feature
analysis

Sound segment
database

Segment
feature
analysis

Seach/
comparison

Query example

Feature vectors
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• When audio material contains mixtures,
global features are insufficient

• Retrieval based on element/object analy

- features are calculated over grouped sub

Generic
element
analysis

Continuous audio
archive

Generic
element
analysis

Seac
compa

Query example

Element representations

Object
formation

(Object
formation)

Word-to-class
mapping

Objects + properties

Properties aloneSymbolic query

rushing water
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Alarm sound detection
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• Alarm sounds have particular structure
- people ‘know them when they hear them

• Isolate alarms in sound mixtures

- representation of energy in time-frequenc
- formation of atomic elements
- grouping by common properties (onset &
- classify by attributes...

• Key: recognize despite background
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Future prosthetic listening devices
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• CASA to replace lost hearing ability
- sound mixtures are difficult for hearing im

• Signal enhancement
- resynthesize a single source without bac
- (need very good resynthesis)

• Signal understanding
- monitor for particular sounds (doorbell, k

& translate into alternative mode (vibro a
- real-time textual descriptions

i.e. “automatic subtitles for real life”

[thunder]
S: I THINK THE
WEATHER'S 
CHANGING
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The ‘Machine listener’
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• Goal: An auditory system for machines
- use same environmental information as p

• Aspects:
- recognize spoken commands (but not oth
- track ‘acoustic channel’ quality (for respo
- categorize environment (conversation, cr

• Scenarios

- personal listener → summary of your day
- autonomous robots: need awareness
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Information from sound

Human Auditory Scene Analysis (ASA)

Computational ASA (CASA)

CASA issues & applications

Summary
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• Sound contains lots of information
... but it’s not easy to extract

• We know a little about how humans hear
... at least for simplified sounds

• We have some ways to copy it
... which we hope to improve

• CASA would have many useful applicati
... machines to listen and remember for u
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