Mining for the Meaning of Music

Dan Ellis

Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Engineering, Columbia University, NY USA
http://labrosa.ee.columbia.edu/
I. Motivation: Oodles of Music
2. Eigenrhythms \& Eigenmelodies
3. Melodic-Harmonic Fragments
4. Other Projects

LabROSA Overview

1. Motivation: Oodles of Music

- The impact of the iPod
o creates new research questions (music IR) o but also: provides new tools for old questions
- What can you do with $100 \mathrm{k}+$ tracks? 0 around 9 months of listening.
- unsupervised data

"The Meaning of Music"

Two kinds of "meaning":

- What does music evoke in a listener's mind?
o i.e. "what does it all mean?" (metaphysics?)
o study with subjective experiments
- (then build detectors for specific responses)
- What phenomena are denoted by"music"?
o i.e. delineate the "set of all music"
○ (the ultimate music/nonmusic classifier?)
O .. this talk's topic

Re-used Musical Elements

- "What are the most popular chord progressions?"
o a well-formed question...
- music occupies a small subset of some space
- look at massive audio archive?
- How can we distill
a large collection of music audio into a compact description of what "music" means?
o or at least a vocabulary...

Potential Applications

- Given a description of the musically valid subspace...
o compression: represent a given piece by its indices/ parameters in the subspace
o classification: subspace representation reveals 'essence'; neighbors are interesting
o manipulation: modifications within the space remain musically valid

Eigenrhythms: Drum Track Structure

- To first order,

All pop music has the same drum track:

- Can we capture this from examples?
- .. including the variations
- Can we exploit it?
- .. for synthesis
- .. for classification
- .. for insight

Lab

Basis Sets

- Dataset reduced to linear combinations of a few basic patterns

o bases H: subspace that spans the data
o weights W: dimension-reduced projection of data

Different basis projections

- Principal Component Analysis (PCA) o optimizes MSE of low-D reconstruction
- Independent Component Analysis (ICA) o projections are independent (cf decorrelated)
- Linear Discriminant Analysis (LDA) - given class labels for data, find dimensions to separate them
- Nonnegative Matrix Factorization (NMF) o each basis function only adds bits in

Data

- Drum tracks extracted from MIDI

- 100 examples (10×10 genre classes)
- fixed mapping to 3 instruments:
bass drum, snare, hi-hat
o temporary proxy for audio transcription...
- Pseudo-envelope representation o 40ms half-Gauss window sampled at 200 Hz

- Extract just one pattern from each MIDI - looking for variety, quantity not a problem

Aligning Data:Tempo

- Need to align patterns prior to PCA/...
- First, normalize tempo
o autocorrelation gives BPM candidates
o keep them all for now...

Aligning Data: Downbeat

- Downbeat from best match of temponormalized pattern to mean template o try every tempo hypotheses, choose best match

Reference pattern (120 BPM)

Original pattern scaled $98 \rightarrow 120$ BPM

Aligned Data

- Tempo normalization + downbeat alignment \rightarrow IOO excerpts (2 bars each):

- Can now extract basis projection(s)

Eigenrhythms (PCA)

Mean pattern

Eigenrhythm 2

Eigenrhythm 4

Eigenrhythm 1

Eigenrhythm 3

Eigenrhythm 5

- Need 20+ Eigenvectors for good coverage of 100 training patterns (I200 dims)
- Eigenrhythms both add and subtract

Lab

Posirhythms (NMF)

Posirhythm 1

Posirhythm 3

Posirhythm 5

- Nonnegative: only adds beat-weight
- Capturing some structure

Lab

Laboratory for the Recognition and

Eigenrhythms for Classification

- Projections in Eigenspace / LDA space

Lab o LDA4: 36\% correct

Eigenrhythm BeatBox

- Resynthesize rhythms from eigen-space

Eigenmelodies?

- Can we do a similar thing with melodies?
- Cluster 'fragments' that recur in melodies
- .. across large music database
- .. one way to get fragment alignment?
- .. trade data for model sophistication

- Data sources
o pitch tracker, or MIDI training data
- Melody fragment representation o DCT(1:20) - removes average, smoothes detail

Melody Clustering

- Clusters match underlying contour:

- Some interesting matches:
O e.g. Pink + Nsync

Lab

Melodic-Harmonic Fragments

- Can we use the subspace and clustering ideas with our oodles of music?
o use lots of real music audio
o capture both melodic and harmonic context...
- Goal: Dictionary of common motifs (clichés)
o build up into longer sequences
o reveal quotes \& inspirations, genre/style idioms
- Questions
o what representation and similarity measure?
o what clustering scheme?
o tractability: how large can we go?

Finding Common Fragments

- Chop up music into short descriptions of musical content
- 24-beat beat-chroma matrices
- Choose a few at "starts" (landmarks)
- Put into LSH table
o similar items fall in same bin
- Find the bins with most entries
= most commonly reused motifs

Beat Tracking

- Goal: Per-'beat' (tatum) feature vector o for tempo normalization, efficiency
- "Onset Strength Envelope" - $\operatorname{sum}_{f}\left(\max \left(0, \operatorname{diff}_{t}(\log |X(t, f)|)\right)\right)$

- Autocorr. + window \rightarrow global tempo estimate

Beat Tracking (2)

o optimizes $\Sigma_{i} O\left(t_{i}\right)+\alpha \Sigma_{i} F\left(t_{i+1}-t_{i}, \tau_{p}\right)$
o where $O(t)$ is onset strength envelope (local score) $W(t)$ is a log-Gaussian window (transition cost) τ_{p} is the default beat period per measured tempo o incrementally find best predecessor at every time o backtrace from largest final score to get beats

$$
\begin{array}{r}
C^{*}(t)=O(t)+\max _{\tau}\left\{\alpha F\left(t-\tau, \tau_{p}\right)+C^{*}(\tau)\right\} \\
P(t)=\underset{\tau}{\operatorname{argmax}}\left\{\alpha F\left(t-\tau, \tau_{p}\right)+C^{*}(\tau)\right\}
\end{array}
$$

Beat Tracking (3)

o there is always a best path ...
Alanis Morissette - All I Want - gap + beats

- 2nd place in MIREX 2006 Beat Tracking
o compared to McKinney \& Moelants human data test 2 (Bragg) - McKinney + Moelants Subject data

Lab

Chroma Features

- Chroma features convert spectral energy into musical weights in a canonical octave o i.e. 12 semitone bins

- Can resynthesize as "Shepard Tones"
o all octaves at once
- Beat + chroma features / 30ms frames
\rightarrow average chroma within each beat
o compact; sufficient?

Key Estimation

- Covariance of chroma reflects key
- Normalize by transposing for best fit
o single Gaussian model of one piece o find ML rotation of other pieces o model all transposed pieces o iterate until
convergence

Aligned Global model

And Your Bird Can Sing

Landmark Location

- Looking for "beginnings" of phrases
o e.g. abrupt change in harmony, instruments, etc.
o use likelihood ratio test: data following under model up to boundary
- Choose top 10 locally-normalized peaks
o .. to control data size
o ? include ± 2 beats to catch errors

Locality Sensitive Hash

- Goal: Quantize high-dimensional data so 'similar' items fall into same bin
- .. for fast and scalable nearest-neighbor search
- Idea: Multiple random scalar projections
o each one will tend to keep neighbors nearby
- items close together in all projections are probably neighbors

Experiments

- Data
o"artist20" - 20 artist $\times 6$ albums $=1413$ tracks o (up to) 10 landmarks/track $=14,078$ patches o each patch $=12$ chroma bins $\times 24$ beats (288 dims)
- Performance
o feature calculation:
~ 60 min
- LSH |4k NNs:
~ 30 sec
- 5I patches have
$>10 \mathrm{NNs}$
within $r=2.0$

Results - artist20

radiohead 07-Ripcord 177.4-182.5s

Results - Beatles

- Only the 86 Beatles tracks
- All beat offsets $=41,705$ patches
- LSH takes 300 sec - approx Nlog N in patches?
- High-pass along time o to avoid sustained notes

09-Martha My Dear 90.9-98.6s

- Song filter o remove hits in same track

Results - Chroma Peaks

- Beat-chroma too diverse o reduce variation by keeping only 4 chroma/frame
- Landmarks
off-by-| \rightarrow use $t_{r}-2 \ldots t_{r}+2$
- 70,606 fragments (all beats would be I.3M fragments)

Results - Detail

- Interesting fragment cluster...

- Not that interesting...
o further simplification of fragments?
- larger dataset?

Other Projects: Music Similarity

- The most central problem...
- motivates extracting musical information
- supports real applications (playlists, discovery)
- But do we need content-based similarity?
o compete with collaborative filtering
o compete with fingerprinting + metadata

- Maybe ... for the Future of Music - connect listeners directly to musicians

Discriminative Classification

- Classification as a proxy for similarity
- Distribution models...

Segment-Level Features

- Statistics of spectra and envelope define a point in feature space
- for SVM classification, or Euclidean similarity...

Lab

MIREX'07 Results

- One system for similarity and classification

PS = Pohle, Schnitzer; GT = George Tzanetakis; LB = Barrington, Turnbull, Torres, Lanckriet; CB = Christoph Bastuck; TL = Lidy, Rauber, Pertusa, Iñesta; ME = Mandel, Ellis; BK = Bosteels, Kerre; PC = Paradzinets, Chen

Cover Song Detection

- "Cover Songs" = reinterpretation of a piece o different instrumentation, character o no match with "timbral" features

Let It Be - The Beatles

Let It Be - Nick Cave

- Need a different representation!
o beat-synchronous chroma features

Matching: Global Correlation

- Cross-correlate entire beat-chroma matrices
- ... at all possible transpositions
o implicit combination of match quality and duration

- One good matching fragment is sufficient...?

"Semantic Bases": MajorMiner

- Describe segment in human-relevant terms
o e.g. anchor space, but more so
- Need ground truth...
o what words to people use?
- MajorMiner
game:
- 400 users
- 7500 unique tags
- 70,000 taggings
- 2200 I 0 -sec clips used
- Train classifiers...

Lab

Mining for Meaning of Music - Ellis

Major|Miner

dpwe's score: 342

New clip
Summary
Change password
Admin
Logout
Leaders

Summary

Your last 10 clips

[^0]
MajorMiner Autotagging Results

- Tags with enough verified clips \rightarrow train SVM
- Some good results
- test has 50\% baseline; 7% better is significant
- 50-300 training patterns
- Next step: Propagate labels
o semi-supervised
○ "multi-instance" learning

Transcription as Classification

- Exchange signal models for data
o transcription as pure classification problem:

Singing Voice Modeling \& Alignment

- How do singers sing?
o e.g. "vowel modification" in classical voice o tuning variation...
- Collect the data
- .. by aligning libretto to recordings
\circ e.g. align Karaoke MIDI files to original recordings o detail at alignments
- Lyric Transcription?

Conclusions

- Lots of data
+ noisy transcription
+ weak clustering
\Rightarrow musical insights?

[^0]: (1) at 1:10 in "Silver Inches" from Enya's album A Day Without Rain Your tags: orchestral, slow, violins Someone else's tags

 - at 1:50 in "Ambition" from (Smog)'s album Supper Your tags: country, male, guitar, drums
 Your tags: country, mane else's tags
 (-) at 4:30 in "Life Form Ends" from The Future Sound of London's albu Lifeforms Disc 2
 Your tags: ambient, electronic, synth, sea, wash, noise
 Someone else's tags
 (-) at 0:00 in "The Road" from Chicago's album Chicago II [Bonus Traci Your tags: horns, saxophone Someone else's tags
 (-) at 2:20 in "Ether" from Geri Soriano-Lightwood/The Baldwin Brothers's album Cooking with Lasers

