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1. Motivation: Oodles of Music

• The impact of the iPod
creates new research questions (music IR)
but also: provides new tools for old questions

• What can you do 
with 100k+ tracks?
around 9 months of 
listening..
unsupervised data
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“The Meaning of Music”
Two kinds of “meaning”:

• What does music evoke 
in a listener’s mind?

i.e. “what does it all mean?” (metaphysics?)
study with subjective experiments
(then build detectors for specific responses ...?)

• What phenomena are denoted 
by “music”?

i.e. delineate the “set of all music”
(the ultimate music/nonmusic classifier?)
.. this talk’s topic 

4

?



Mining for Meaning of Music - Ellis 2008-03-27 p.     /45

Re-used Musical Elements
• “What are the most popular chord 

progressions?”
a well-formed question...
music occupies a small subset 
of some space
look at massive audio archive?

• How can we distill 
a large collection of music audio 
into a compact description 
of what “music” means?
or at least a vocabulary...
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Potential Applications
• Given a description of the 

musically valid subspace...
compression: represent a given piece by its indices/
parameters in the subspace

classification: subspace representation reveals 
‘essence’; neighbors are interesting

manipulation: modifications within the space remain 
musically valid
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2.  Eigenrhythms: Drum Track Structure

• To first order, 
All pop music has the same drum track:

• Can we capture this from examples?
.. including the variations

• Can we exploit it?
.. for synthesis
.. for classification
.. for insight

Ellis & Arroyo ISMIR’04
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Basis Sets
• Dataset reduced to 

linear combinations of a few basic patterns

bases H: subspace that spans the data
weights W: dimension-reduced projection of data

X       =     W      ×       Hdata
weights

bases
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Different basis projections

• Principal Component Analysis (PCA)
optimizes MSE of low-D reconstruction

• Independent Component Analysis (ICA)
projections are independent (cf decorrelated)

• Linear Discriminant Analysis (LDA)
given class labels for data, find dimensions to 
separate them

• Nonnegative Matrix Factorization (NMF)
each basis function only adds bits in
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100 200 300 samples

BD

SN

HH

Data
• Drum tracks extracted from MIDI

100 examples (10 × 10 genre classes)
fixed mapping to 3 instruments:
bass drum, snare, hi-hat
temporary proxy for audio transcription...

• Pseudo-envelope representation
40ms half-Gauss window sampled at 200 Hz

• Extract just one pattern from each MIDI 
looking for variety, quantity not a problem
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Aligning Data: Tempo
• Need to align patterns prior to PCA/...
• First, normalize tempo

autocorrelation gives BPM candidates
keep them all for now... 
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Aligning Data: Downbeat
• Downbeat from best match of tempo-

normalized pattern to mean template
try every tempo hypotheses, choose best match

Original pattern scaled
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Aligned Data

• Tempo normalization + downbeat alignment
→ 100 excerpts (2 bars each):

• Can now extract basis projection(s)
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Eigenrhythms (PCA)

• Need 20+ Eigenvectors for good coverage 
of 100 training patterns (1200 dims)

• Eigenrhythms both add and subtract

14
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Posirhythms (NMF)

• Nonnegative: only adds beat-weight
• Capturing some structure
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Eigenrhythms for Classification
• Projections in Eigenspace / LDA space

• 10-way Genre classification (nearest nbr):
PCA3: 20% correct
LDA4: 36% correct
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Eigenrhythm BeatBox
• Resynthesize rhythms from eigen-space

17
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Eigenmelodies?
• Can we do a similar thing with melodies?
• Cluster ‘fragments’ that recur in melodies

.. across large music database

.. one way to get fragment alignment?

.. trade data for model sophistication

• Data sources
pitch tracker, or MIDI training data

• Melody fragment representation
DCT(1:20) - removes average, smoothes detail

Training
data

Melody
extraction

5 second
fragments

Top
clusters

VQ 
clustering
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Melody Clustering
• Clusters match underlying contour:

• Some interesting 
matches:
e.g. Pink + Nsync
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3.  Melodic-Harmonic Fragments
• Can we use the subspace and clustering 

ideas with our oodles of music?
use lots of real music audio
capture both melodic and harmonic context...

• Goal: Dictionary of common motifs (clichés)
build up into longer sequences
reveal quotes & inspirations, genre/style idioms

• Questions
what representation and similarity measure?
what clustering scheme?
tractability: how large can we go?
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Finding Common Fragments

• Chop up music into short descriptions of 
musical content
24-beat beat-chroma matrices

• Choose a few at “starts” (landmarks)

• Put into LSH table 
similar items fall in same bin

• Find the bins with most entries
= most commonly reused motifs

21
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Beat Tracking
• Goal: Per-‘beat’ (tatum) feature vector

for tempo normalization, efficiency

• “Onset Strength Envelope”
sumf(max(0, difft(log |X(t, f)|)))

• Autocorr. + window → global tempo estimate
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Beat Tracking (2)
• Dynamic Programming finds beat times {ti}

optimizes i O(ti) +  i F(ti+1 – ti ,  p)
where O(t) is onset strength envelope (local score)
W(t) is a log-Gaussian window (transition cost)
p is the default beat period per measured tempo
incrementally find best predecessor at every time
backtrace from largest final score to get beats
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Beat Tracking (3)
• DP will bridge gaps (non-causal)

there is always a best path ...

• 2nd place in MIREX 2006 Beat Tracking
compared to McKinney & Moelants human data
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Chroma Features
• Chroma features convert spectral energy 

into musical weights in a canonical octave
i.e. 12 semitone bins

• Can resynthesize as “Shepard Tones”
all octaves at once
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Beat-Chroma Features
• Beat + chroma features / 30ms frames
→ average chroma within each beat
compact; sufficient?
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Aligned Global model

Taxman Eleanor Rigby I'm Only Sleeping

She Said She Said Good Day Sunshine And Your Bird Can Sing

Love You To Yellow Submarine
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Key Estimation
• Covariance of chroma reflects key

• Normalize by transposing for best fit

single Gaussian 
model of one piece
find ML rotation 
of other pieces
model all 
transposed pieces
iterate until 
convergence
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Landmark Location
• Looking for “beginnings” of phrases

e.g. abrupt change in harmony, instruments, etc.
use likelihood ratio test: 
data following under model up to boundary

• Choose top 10 
locally-normalized 
peaks
.. to control 
data size
? include ± 2 beats
to catch errors
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Locality Sensitive Hash
• Goal: Quantize high-dimensional data so 

‘similar’ items fall into same bin
.. for fast and scalable nearest-neighbor search

• Idea:  Multiple random scalar projections
each one will tend to keep neighbors nearby
items close 
together in all 
projections 
are probably 
neighbors
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Experiments
• Data

“artist20” - 20 artist x 6 albums = 1413 tracks
(up to) 10 landmarks/track = 14,078 patches
each patch = 12 chroma bins x 24 beats (288 dims)

• Performance
feature calculation:
~ 60 min
LSH 14k NNs:
~ 30 sec
51 patches have 
>10 NNs 
within r = 2.0
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Results - artist20

mainly sustained notes
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Results - Beatles
• Only the 86 Beatles tracks

• All beat offsets = 41,705 patches
LSH takes 300 sec - approx NlogN in patches?

• High-pass 
along time 
to avoid 
sustained
notes

• Song filter
remove hits
in same 
track
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Results - Chroma Peaks

• Beat-chroma 
too diverse
reduce variation 
by keeping only 
4 chroma/frame

• Landmarks 
off-by-1 → 
use tr –2 ... tr +2
70,606 fragments 
(all beats would be 
1.3M fragments)
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Results - Detail
• Interesting fragment cluster...

• Not that interesting...
further simplification of fragments?
larger dataset?
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4. Other Projects: Music Similarity
• The most central problem...

motivates extracting musical information
supports real applications (playlists, discovery)

• But do we need content-based similarity?
compete with collaborative filtering
compete with fingerprinting + metadata

• Maybe ... for the Future of Music
connect listeners directly to musicians

35



Mining for Meaning of Music - Ellis 2008-03-27 p.     /45

Discriminative Classification
• Classification as a proxy for similarity

• Distribution models...

• vs. SVM
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Segment-Level Features
• Statistics of spectra and envelope

define a point in feature space
for SVM classification, or Euclidean similarity...
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Mandel & Ellis ‘07

Lab
ROSA
Laboratory for the Recognition and
Organization of Speech and Audio

LabROSA’s audio music similarity and classification systems
Michael I Mandel and Daniel P W Ellis

LabROSA · Dept of Electrical Engineering · Columbia University, New York
{mim,dpwe}@ee.columbia.edu

1. Feature Extraction
• Spectral features are the same as Mandel and Ellis (2005), mean and

unwrapped covariance of MFCCs
• Temporal features are similar to those in Rauber et al. (2002)

• Break input into overlapping 10-second clips
• Analyze mel spectrum of each clip, averaging clips’ features
• Combine mel frequencies together to get magnitude bands for low,

low-mid, high-mid, and high frequencies
• FFT in time gives modulation frequency, keep magnitude of low-

est 20% of frequencies
• DCT in modulation frequency gives envelope cepstrum
• Stack the four bands’ envelope cepstra into one feature vector

• Each feature is then normalized across all of the songs to be zero-
mean, unit-variance.

2. Similarity and Classification
• We use a DAG-SVM for n-way classification of songs (Platt et al., 2000)
• The distance between songs is the Euclidean distance between their

feature vectors
• During testing, some songs were a top similarity match for many songs
• Re-normalizing each song’s feature vector avoided this problem
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3. Results
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MIREX’07 Results
• One system for similarity and classification
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Cover Song Detection
• “Cover Songs” = reinterpretation of a piece

different instrumentation, character
no match with “timbral” features

• Need a different representation!
beat-synchronous chroma features
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Matching: Global Correlation
• Cross-correlate entire beat-chroma matrices

... at all possible transpositions
implicit combination of match quality and duration

• One good matching fragment is sufficient...?
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“Semantic Bases”: MajorMiner
• Describe segment in human-relevant terms

e.g. anchor space, but more so

• Need ground truth...
what words to people use?

• MajorMiner 
game:
400 users
7500 unique tags
70,000 taggings
2200 10-sec clips used

• Train classifiers...

41
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MajorMiner Autotagging Results
• Tags with enough verified clips → train SVM

• Some good results
test has 50% baseline; 
7% better is significant
50-300 training patterns

• Next step: 
Propagate labels
semi-supervised
“multi-instance” learning
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Transcription as Classification
• Exchange signal models for data

transcription as pure classification problem:

Poliner & Ellis ‘05,’06,’07

Classification:
•N-binary SVMs (one for ea. note).
•Independent frame-level
classification on 10 ms grid.

•Dist. to class bndy as posterior.

classification posteriors

Temporal Smoothing:
•Two state (on/off) independent
HMM for ea. note.  Parameters 
learned from training data.

•Find Viterbi sequence for ea. note.

hmm smoothing

Training data and features:
•MIDI, multi-track recordings, 
playback piano, & resampled audio
(less than 28 mins of train audio). 

•Normalized magnitude STFT.

feature representation feature vector
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Singing Voice Modeling & Alignment
• How do singers sing?

e.g. “vowel modification” in classical voice
tuning variation...

• Collect the data
.. by aligning libretto 
to recordings
e.g. align 
Karaoke MIDI files 
to original recordings
detail at alignments

• Lyric Transcription?
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Conclusions

• Lots of data 
+ noisy transcription 
+ weak clustering
⇒ musical insights?

Music

audio

Tempo

and beat

Low-level

features Classification

and Similarity

Music

Structure

Discovery

Melody

and notes

Key

and chords

browsing

discovery

production

modeling

generation

curiosity


