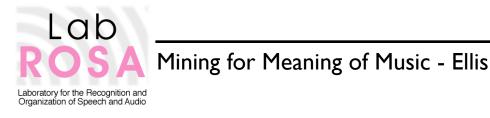
Mining for the Meaning of Music

Dan Ellis

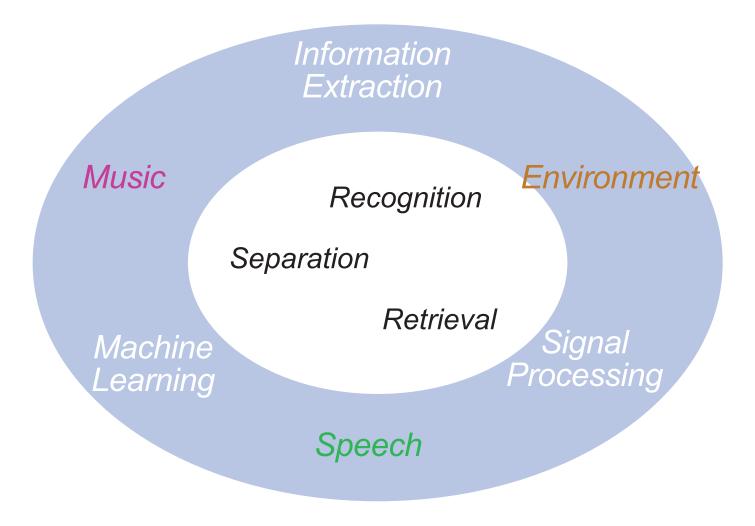
Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Engineering, Columbia University, NY USA

http://labrosa.ee.columbia.edu/

- Motivation: Oodles of Music
- 2. Eigenrhythms & Eigenmelodies
- 3. Melodic-Harmonic Fragments
- 4. Other Projects



LabROSA Overview



Motivation: Oodles of Music

- The impact of the iPod
 - creates new research questions (music IR)
 - but also: provides new tools for old questions
- What can you do with 100k+ tracks?
 - around 9 months of listening..
 - unsupervised data

"The Meaning of Music"

Two kinds of "meaning":

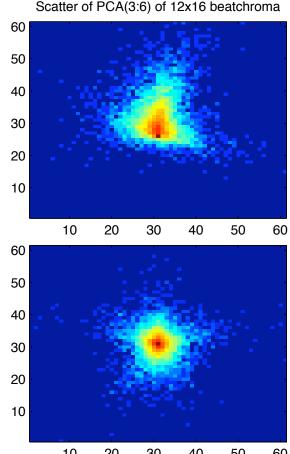
- What does music evoke in a listener's mind?
 - i.e. "what does it all mean?" (metaphysics?)
 - study with subjective experiments
 - (then build detectors for specific responses ...?)
- What phenomena are denoted by "music"?
 - i.e. delineate the "set of all music"
 - (the ultimate music/nonmusic classifier?)
 - .. this talk's topic

COLUMBIA | INIVERSITY

Re-used Musical Elements

"What are the most popular chord progressions?"

- o a well-formed question...
- music occupies a small subset of some space
- look at massive audio archive?
- How can we distill a large collection of music audio into a compact description of what "music" means?
 - or at least a vocabulary...



COLUMBIA | INIVERSITY

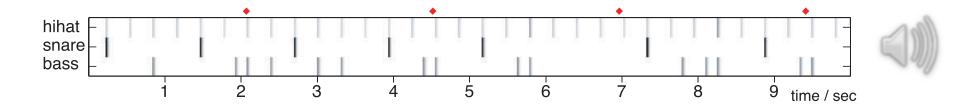
Potential Applications

- Given a description of the musically valid subspace...
 - compression: represent a given piece by its indices/ parameters in the subspace
 - classification: subspace representation reveals 'essence'; neighbors are interesting
 - manipulation: modifications within the space remain musically valid

2. Eigenrhythms: Drum Track Structure

Ellis & Arroyo ISMIR'04

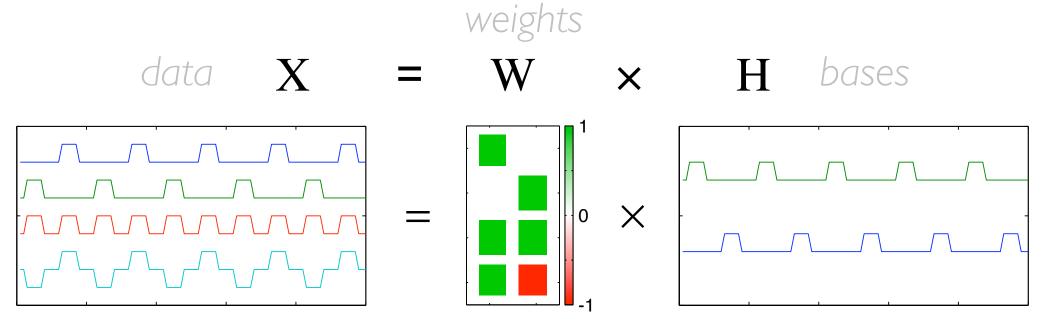
To first order,
 All pop music has the same drum track:



- Can we capture this from examples?
 - .. including the variations
- Can we exploit it?
 - .. for synthesis
 - .. for classification
 - .. for insight

Basis Sets

Dataset reduced to linear combinations of a few basic patterns

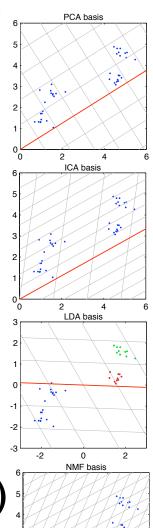


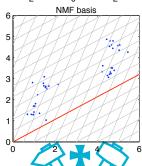
- bases H: subspace that spans the data
- weights W: dimension-reduced projection of data

COLUMBIA UNIVERSITY

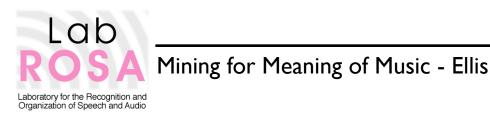
Different basis projections

- Principal Component Analysis (PCA)
 - optimizes MSE of low-D reconstruction
- Independent Component Analysis (ICA)
 - o projections are independent (cf decorrelated)
- Linear Discriminant Analysis (LDA)
 - o given class labels for data, find dimensions to separate them
- Nonnegative Matrix Factorization (NMF)
 - each basis function only adds bits in

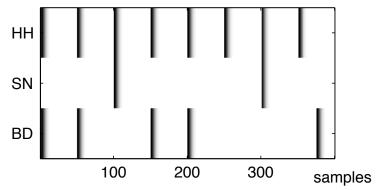




COLUMBIA | INIVERSITY



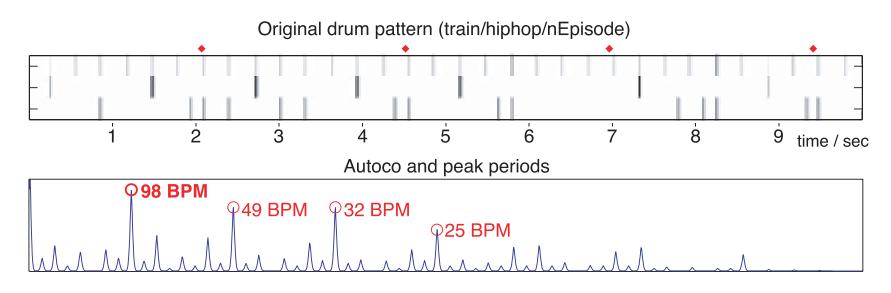
- Drum tracks extracted from MIDI
 - 100 examples (10 × 10 genre classes)
 - fixed mapping to 3 instruments: bass drum, snare, hi-hat
 - temporary proxy for audio transcription...
- Pseudo-envelope representation
 - 40ms half-Gauss window sampled at 200 Hz

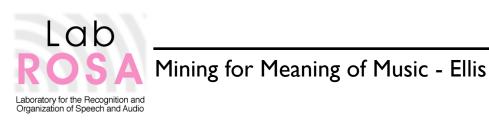


- Extract just one pattern from each MIDI
 - o looking for variety, quantity not a problem

Aligning Data: Tempo

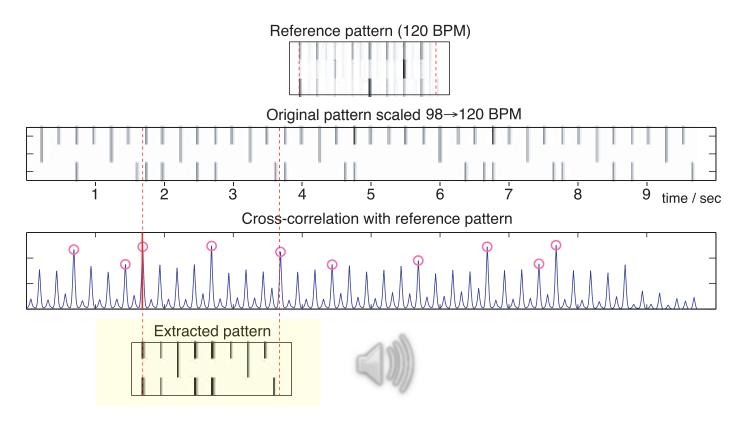
- Need to align patterns prior to PCA/...
- First, normalize tempo
 - autocorrelation gives BPM candidates
 - keep them all for now...





Aligning Data: Downbeat

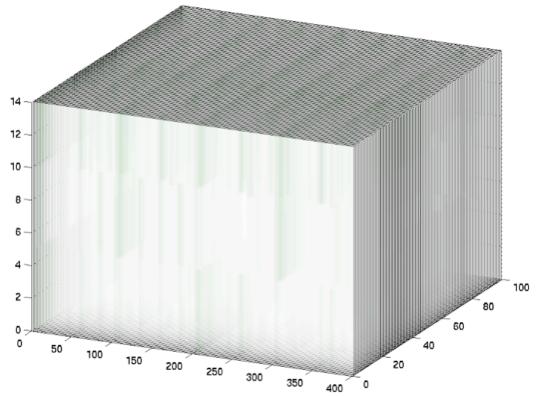
- Downbeat from best match of temponormalized pattern to mean template
 - o try every tempo hypotheses, choose best match



Mining for Meaning of Music - Ellis

Aligned Data

- Tempo normalization + downbeat alignment
 - → 100 excerpts (2 bars each):



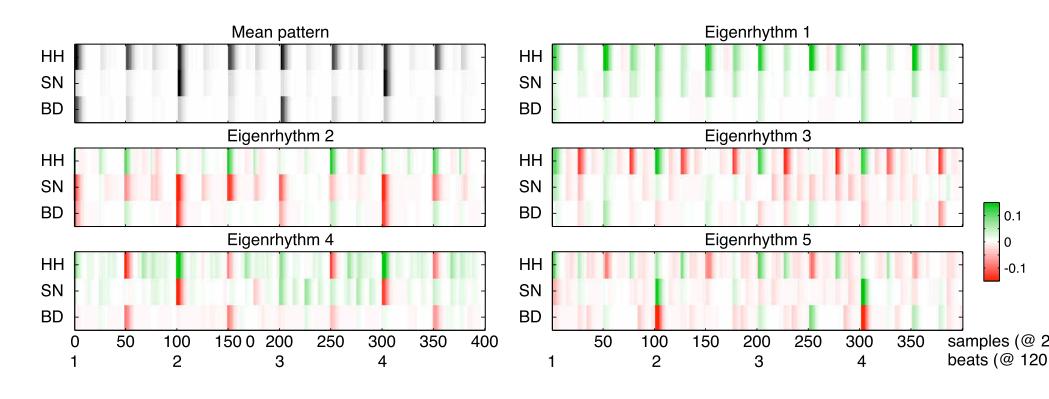
Can now extract basis projection(s)

Mining for Meaning of Music - Ellis

p. 13/45

Lab

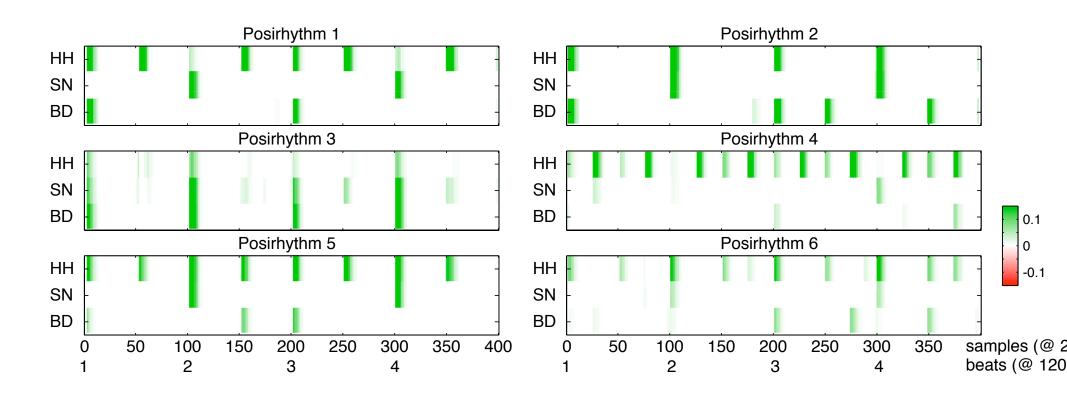
Eigenrhythms (PCA)



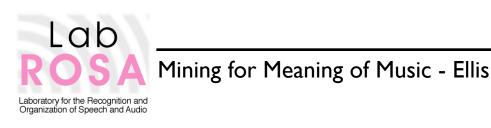
- Need 20+ Eigenvectors for good coverage of 100 training patterns (1200 dims)
- Eigenrhythms both add and subtract

Mining for Meaning of Music - Ellis

Posirhythms (NMF)

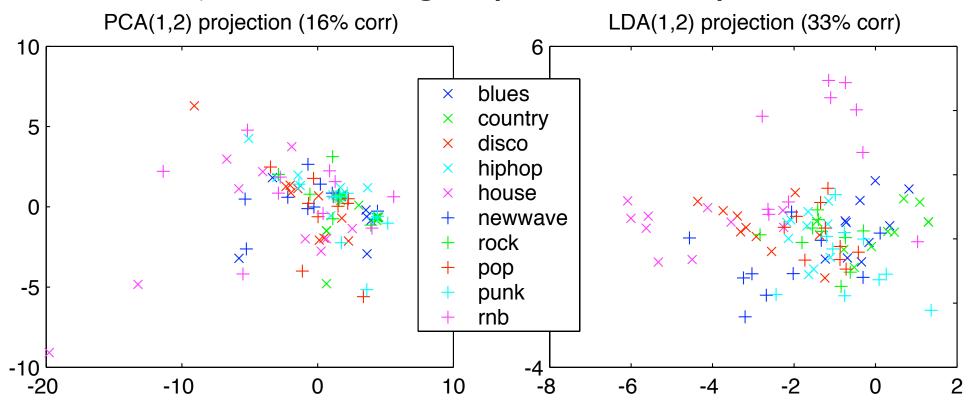


- Nonnegative: only adds beat-weight
- Capturing some structure



Eigenrhythms for Classification

Projections in Eigenspace / LDA space



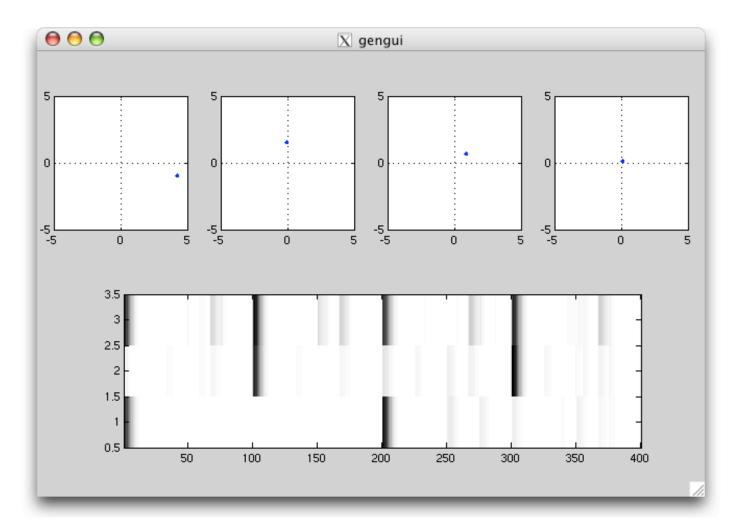
• 10-way Genre classification (nearest nbr):

• PCA3: 20% correct

• LDA4: 36% correct

Eigenrhythm BeatBox

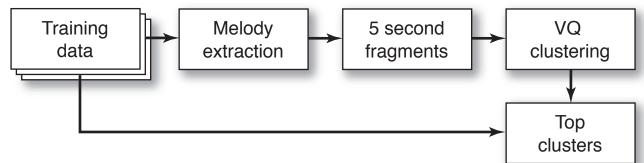
Resynthesize rhythms from eigen-space



p. 17/45

Eigenmelodies?

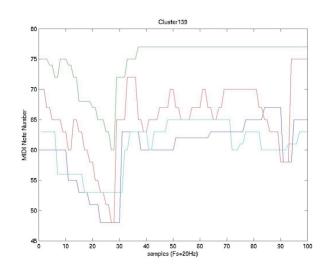
- Can we do a similar thing with melodies?
- Cluster 'fragments' that recur in melodies
 - .. across large music database
 - .. one way to get fragment alignment?
 - .. trade data for model sophistication

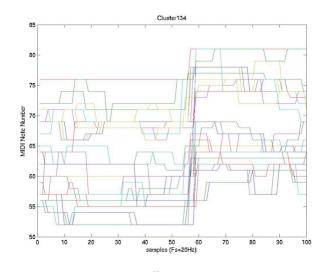


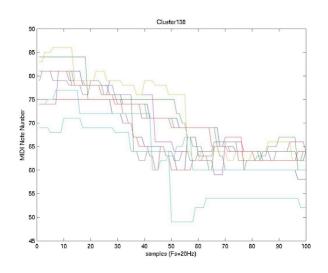
- Data sources
 - o pitch tracker, or MIDI training data
- Melody fragment representation
 - o DCT(1:20) removes average, smoothes detail

Melody Clustering

Clusters match underlying contour:

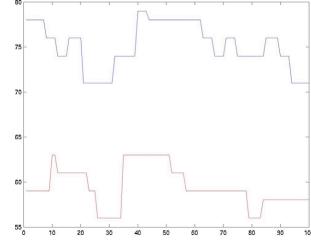






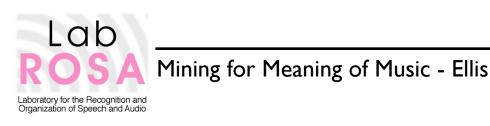
Some interesting matches:

• e.g. Pink + Nsync

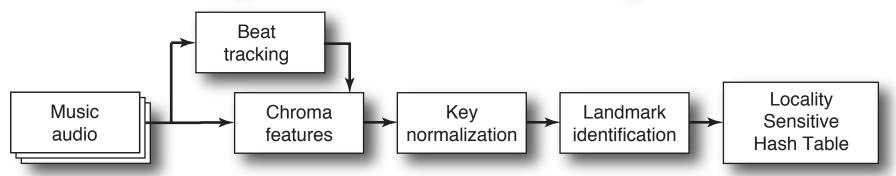


Melodic-Harmonic Fragments

- Can we use the subspace and clustering ideas with our oodles of music?
 - use lots of real music audio
 - o capture both melodic and harmonic context...
- Goal: Dictionary of common motifs (clichés)
 - build up into longer sequences
 - reveal quotes & inspirations, genre/style idioms
- Questions
 - what representation and similarity measure?
 - what clustering scheme?
 - tractability: how large can we go?

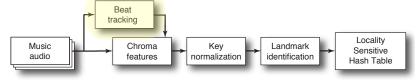


Finding Common Fragments



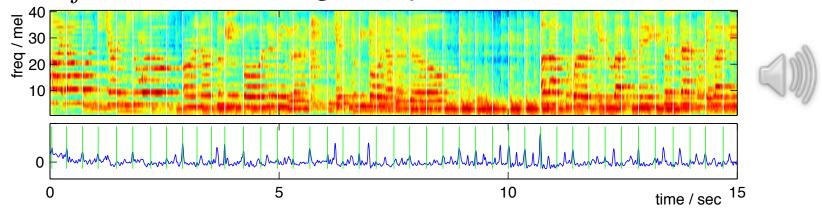
- Chop up music into short descriptions of musical content
 - 24-beat beat-chroma matrices
- Choose a few at "starts" (landmarks)
- Put into LSH table
 - o similar items fall in same bin
- Find the bins with most entries
 - = most commonly reused motifs

Beat Tracking

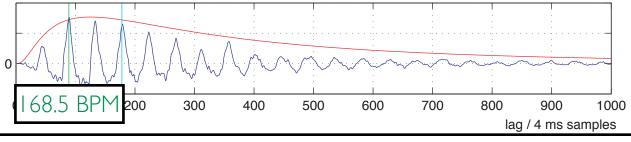


Ellis '06,'07

- Goal: Per-'beat' (tatum) feature vector
 - o for tempo normalization, efficiency
- "Onset Strength Envelope"
 - \circ sum $f(\max(0, \operatorname{diff}_t(\log |X(t, f)|)))$

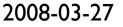


Autocorr. + window → global tempo estimate

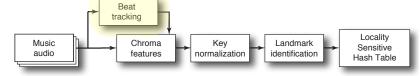


Lab

Laboratory for the Recognition and Organization of Speech and Audio

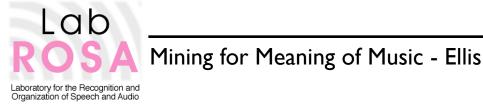


Beat Tracking (2)



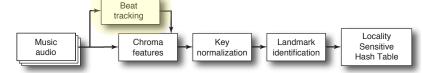
- Dynamic Programming finds beat times $\{t_i\}$
 - \circ optimizes $\Sigma_i O(t_i) + \alpha \Sigma_i F(t_{i+1} t_i, \tau_p)$
 - where O(t) is onset strength envelope (local score) W(t) is a log-Gaussian window (transition cost) τ_p is the default beat period per measured tempo
 - o incrementally find best predecessor at every time
 - backtrace from largest final score to get beats



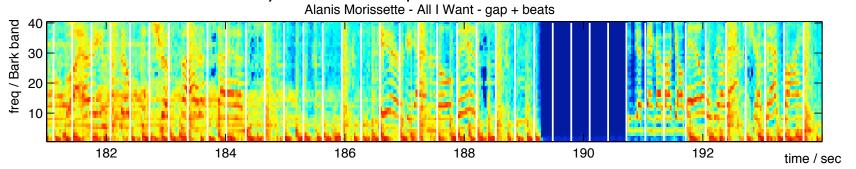


COLUMBIA | INIVERSITY

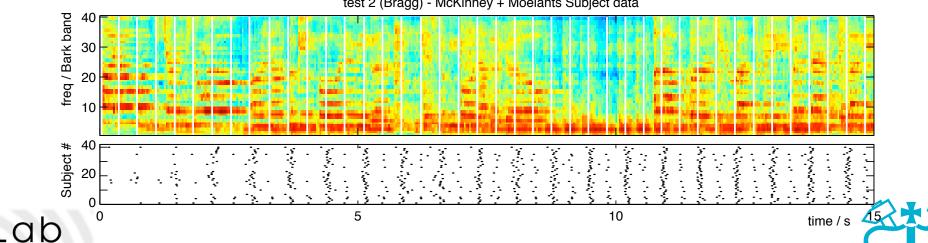
Beat Tracking (3)



- DP will bridge gaps (non-causal)
 - there is always a best path ...



- 2nd place in MIREX 2006 Beat Tracking
 - o compared to McKinney & Moelants human data test 2 (Bragg) McKinney + Moelants Subject data

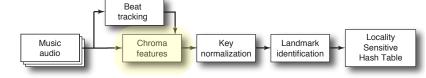


Mining for Meaning of Music - Ellis

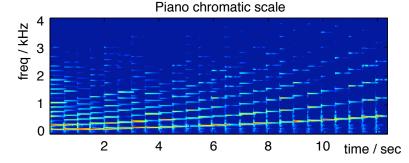
Laboratory for the Recognition and Organization of Speech and Audio 2008-03-27

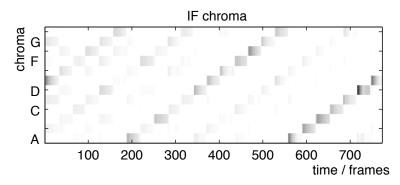
p. 24/45

Chroma Features

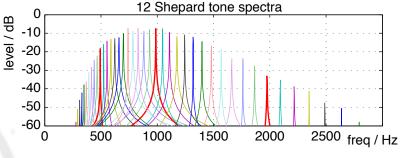


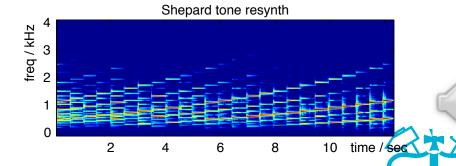
- Chroma features convert spectral energy into musical weights in a canonical octave
 - o i.e. 12 semitone bins





- Can resynthesize as "Shepard Tones"
 - all octaves at once





Laboratory for the Recognition and Organization of Speech and Audio

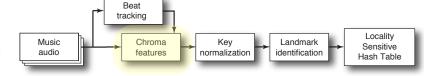
Mining for Meaning of Music - Ellis

2008-03-27

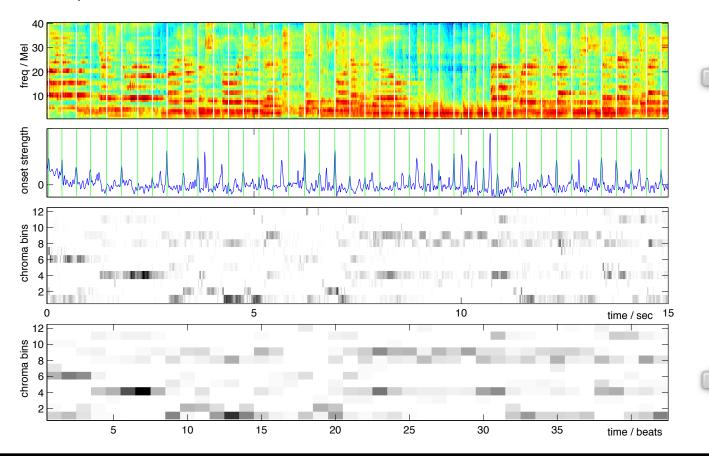
p. 25/45

COLUMBIA UNIVERSITY

Beat-Chroma Features



- Beat + chroma features / 30ms frames
 - → average chroma within each beat
 - o compact; sufficient?



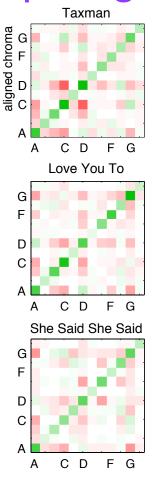
Mining for Meaning of Music - Ellis

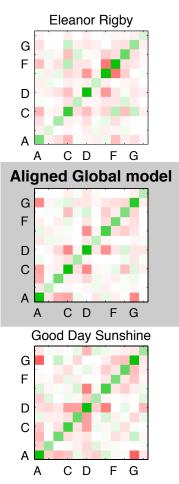
2008-03-27

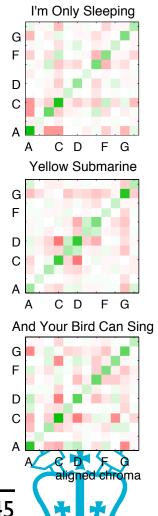
p. 26/45

Key Estimation

- Covariance of chroma reflects key
- Ellis ICASSP '07
- Normalize by transposing for best fit
 - single Gaussian
 model of one piece
 - find ML rotation of other pieces
 - model all transposed pieces
 - iterate until convergence

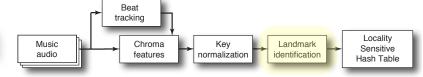




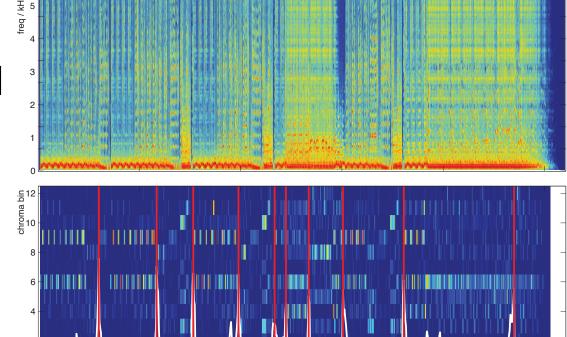


COLUMBIA UNIVERSITY

Landmark Location

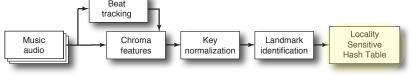


- Looking for "beginnings" of phrases
 - e.g. abrupt change in harmony, instruments, etc.
 - use likelihood ratio test:
 data following under model up to boundary
- Choose top 10 locally-normalized peaks
 - .. to control data size
 - ? include ± 2 beats to catch errors

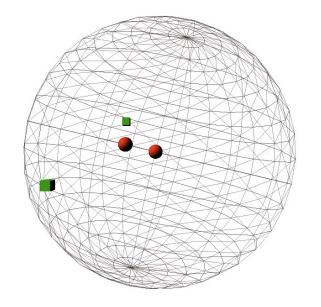


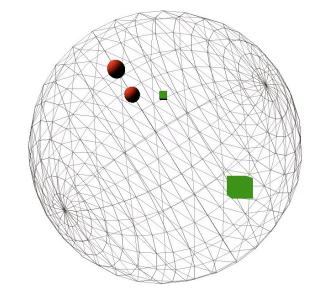
Come Together - Spectrogram, Beat-sync chromogram, and top 10 segment points

Locality Sensitive Hash



- Goal: Quantize high-dimensional data so 'similar' items fall into same bin
 - .. for fast and scalable nearest-neighbor search
- Idea: Multiple random scalar projections
 - each one will tend to keep neighbors nearby
 - o items close together in all projections are probably neighbors





from Slaney & Casey '08

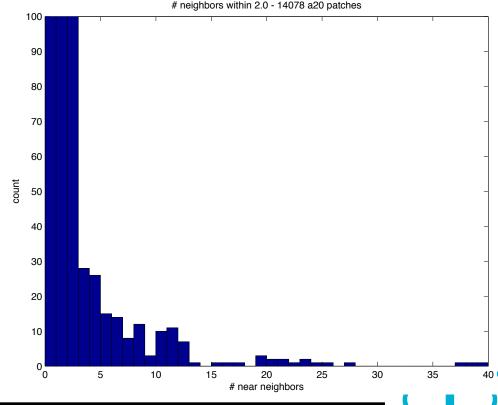
Experiments

Data

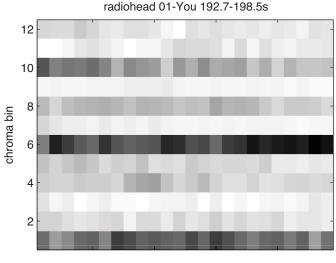
- \circ "artist 20" 20 artist x 6 albums = 1413 tracks
- o (up to) 10 landmarks/track = 14,078 patches
- \circ each patch = 12 chroma bins \times 24 beats (288 dims)

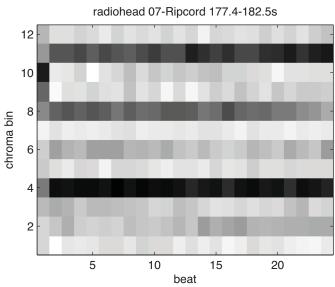
Performance

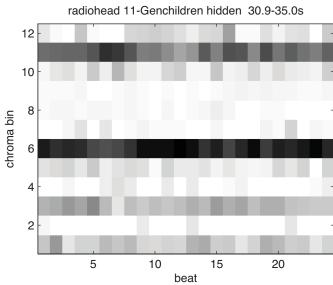
- feature calculation:
 - ~ 60 min
- o LSH 14k NNs:
 - ~ 30 sec
- 51 patches have>10 NNswithin r = 2.0



Results - artist20







mainly sustained notes

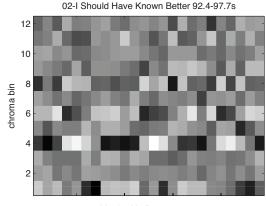
Mining for Meaning of Music - Ellis

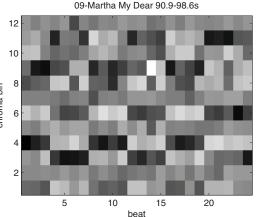
2008-03-27

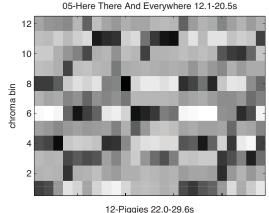
p. 31/45

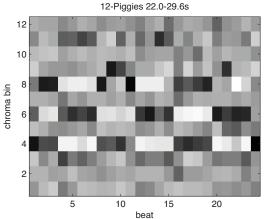
Results - Beatles

- Only the 86 Beatles tracks
- All beat offsets = 41,705 patches
 LSH takes 300 sec approx NlogN in patches?
- High-pass along time
 - to avoid sustained notes
- Song filter
 - remove hits in same track









2008-03-27

p. 32/45

Results - Chroma Peaks

Beat-chroma too diverse

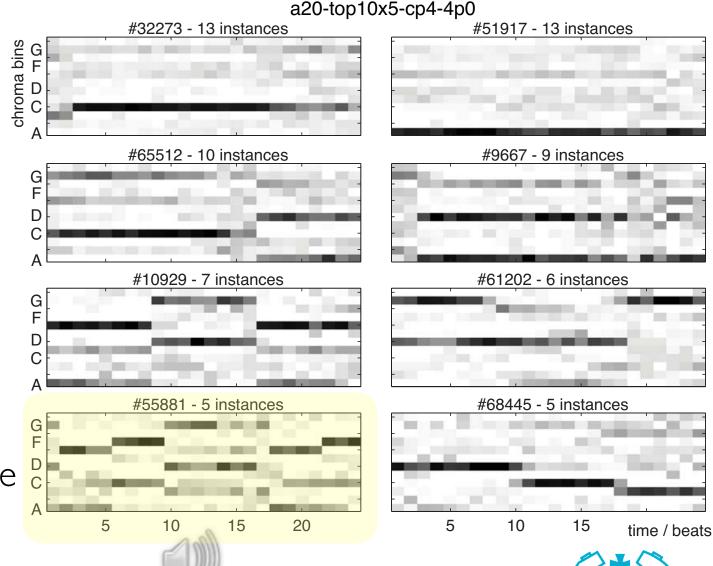
reduce variation by keeping only 4 chroma/frame

Landmarks

use $t_r - 2 ... t_r + 2$

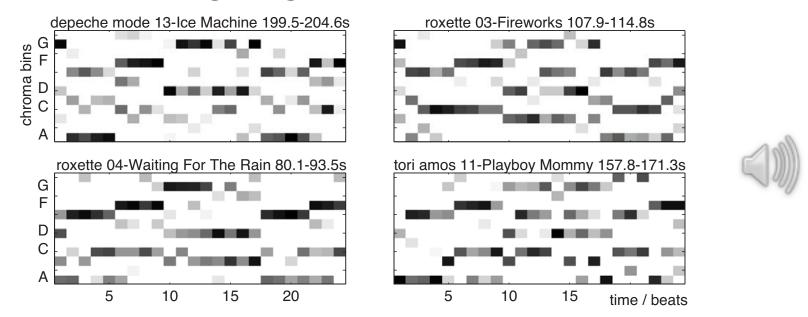
70,606 fragments

 (all beats would be
 1.3M fragments)



Results - Detail

Interesting fragment cluster...



- Not that interesting...
 - further simplification of fragments?
 - larger dataset?

4. Other Projects: Music Similarity

- The most central problem...
 - motivates extracting musical information
 - supports real applications (playlists, discovery)
- But do we need content-based similarity?
 - o compete with collaborative filtering
 - compete with fingerprinting + metadata

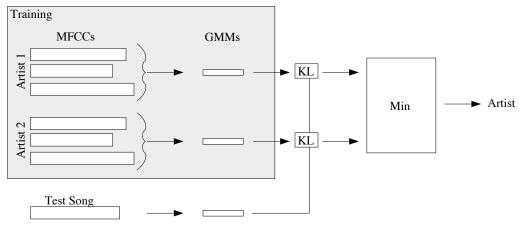
- Maybe ... for the Future of Music
 - connect listeners directly to musicians

COLUMBIA UNIVERSITY

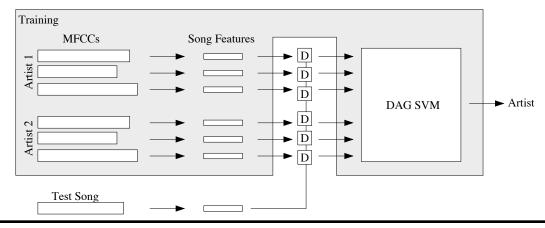
Discriminative Classification

Mandel & Ellis '05

- Classification as a proxy for similarity
- Distribution models...



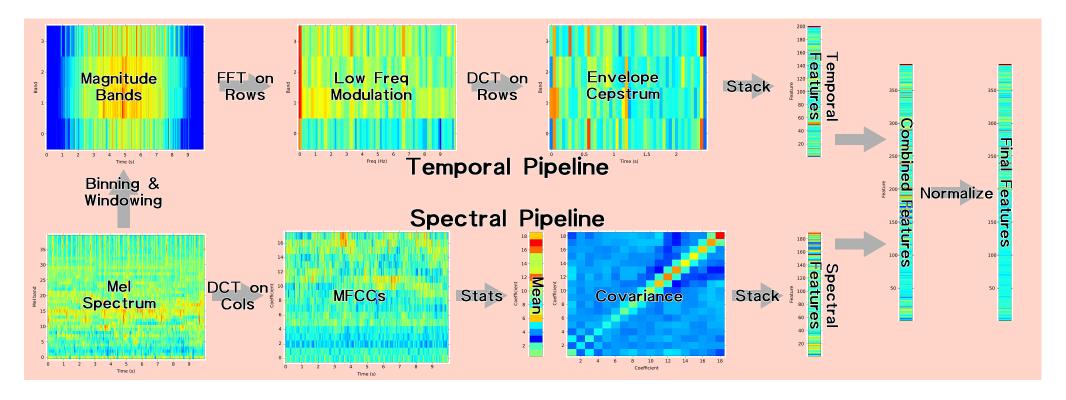
vs. SVM



Segment-Level Features

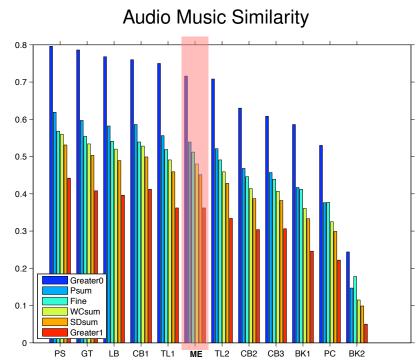
Mandel & Ellis '07

- Statistics of spectra and envelope define a point in feature space
 - o for SVM classification, or Euclidean similarity...



MIREX'07 Results

One system for similarity and classification



Audio Classification 70 60 50 40 30 20 Genre ID Raw 10 Mood ID

PS = Pohle, Schnitzer; GT = George Tzanetusa, Iñesta; ME = Mandel, Ellis; BK = Bosteels, GH = Guaus, Herrera Kerre; PC = Paradzinets, Chen

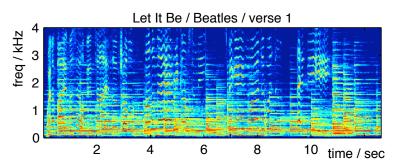
IM = IMIRSEL M2K; ME = Mandel, Ellis; TL = Lidy, takis; LB = Barrington, Turnbull, Torres, Lanckriet; Rauber, Pertusa, Iñesta; GT = George Tzane-CB = Christoph Bastuck; TL = Lidy, Rauber, Per- takis; KL = Kyogu Lee; CL = Laurier, Herrera;

Cover Song Detection

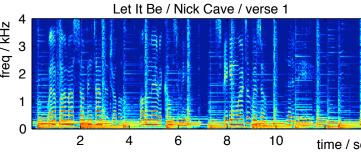
Ellis & Poliner '07

- "Cover Songs" = reinterpretation of a piece
 - o different instrumentation, character
 - o no match with "timbral" features

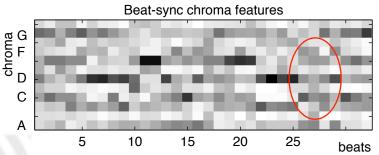
Let It Be - The Beatles

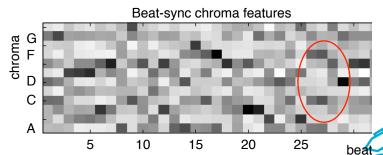


Let It Be - Nick Cave



- Need a different representation!
 - beat-synchronous chroma features





Mining for Meaning of Music - Ellis

2008-03-27

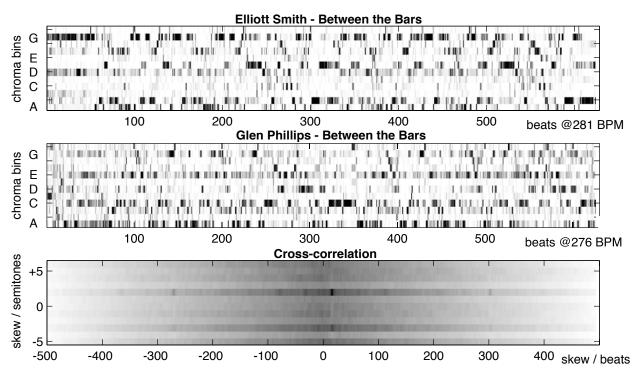
p. 39/45

Matching: Global Correlation

- Cross-correlate entire beat-chroma matrices
 - ... at all possible transpositions

Mining for Meaning of Music - Ellis

o implicit combination of match quality and duration



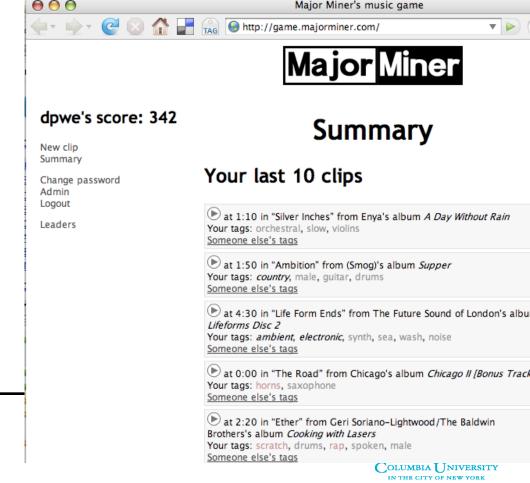
One good matching fragment is sufficient...?

COLUMBIA UNIVERSITY

"Semantic Bases": MajorMiner

Mandel & Ellis '07,'08

- Describe segment in human-relevant terms
 - o e.g. anchor space, but more so
- Need ground truth...
 - what words to people use?
- MajorMiner game:
 - 400 users
 - 7500 unique tags
 - 70,000 taggings
 - o 2200 10-sec clips used
- Train classifiers...



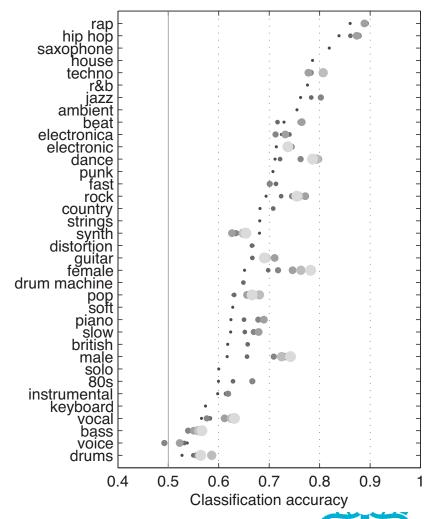
Mining for Meaning of Music - Ellis

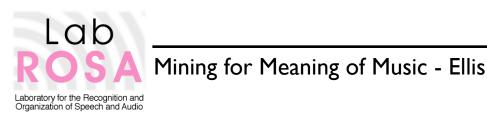
MajorMiner Autotagging Results

Tags with enough verified clips → train SVM

Some good results

- test has 50% baseline;7% better is significant
- 50-300 training patterns
- Next step: Propagate labels
 - o semi-supervised
 - o "multi-instance" learning





Transcription as Classification

Poliner & Ellis '05,'06,'07

- Exchange signal models for data
 - transcription as pure classification problem:

Training data and features:

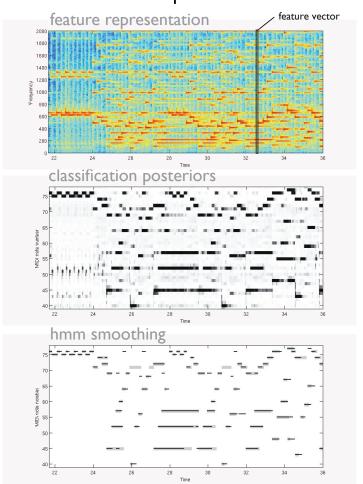
- •MIDI, multi-track recordings, playback piano, & resampled audio (less than 28 mins of train audio).
- •Normalized magnitude STFT.

Classification:

- •N-binary SVMs (one for ea. note).
- •Independent frame-level classification on 10 ms grid.
- Dist. to class bndy as posterior.

Temporal Smoothing:

- •Two state (on/off) independent HMM for ea. note. Parameters learned from training data.
- •Find Viterbi sequence for ea. note.



Singing Voice Modeling & Alignment

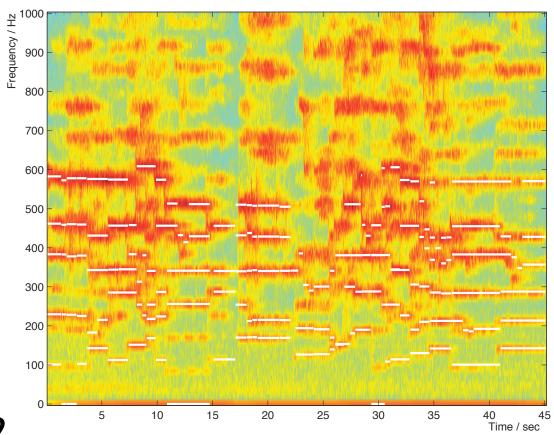
• How do singers sing?

Christine Smit Johanna Devaney

- o e.g. "vowel modification" in classical voice
- tuning variation...

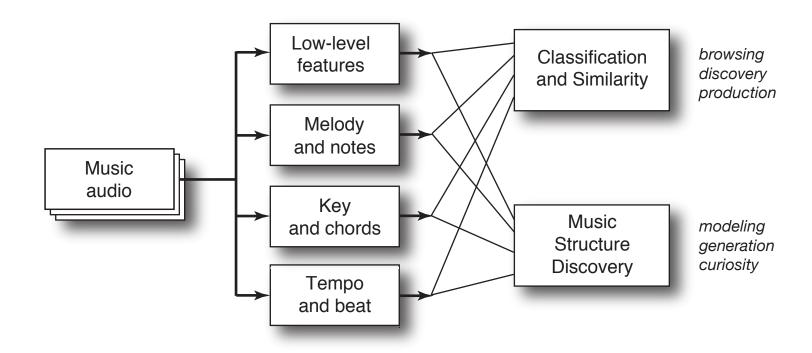
Collect the data

- .. by aligning libretto to recordings
- e.g. alignKaraoke MIDI filesto original recordings
- detail at alignments



Lyric Transcription?

Conclusions



- Lots of data
 - + noisy transcription
 - + weak clustering
 - ⇒ musical insights?

