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1. Human Auditory Scene Analysis

2

“Imagine two narrow channels dug up from the edge of a lake, 
with handkerchiefs stretched across each one.  Looking only 
at the motion of the handkerchiefs, you are to answer 
questions such as: How many boats are there on the lake and 
where are they?”   (after Bregman’90) 

• Now: 
Hearing as the model for machine perception

• Future: Machines to enhance human perception
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Auditory Scene Analysis
• Listeners organize sound mixtures

into discrete perceived sources
based on within-signal cues (audio + ...)

common 
onset 
+ continuity
harmonicity

spatial, modulation, ...
learned “schema”
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Spatial Hearing
• People perceive sources based on cues

spatial (binaural): ITD, ILD
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Blauert ’96
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Human Performance:  Spatial Info
• Task: Coordinate Response Measure

“Ready Baron go to green eight now”
256 variants, 16 speakers
correct = color and number for “Baron”

• Accuracy as a function of spatial separation:

A, B same speaker

5

Brungart et al.’02

crm-11737+16515.wav
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Human Performance:  Source Info
• CRM varying the level and voice character

(same spatial location)

energetic vs. informational masking
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Brungart et al.’01
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Human Hearing: Limitations
• Sensor number: just 2 ears
• Sensor location: short, horizontal baseline
• Sensor performance: local dynamic range

• Processing:  Attention & Memory limits
integration time
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2. Computational Scene Analysis

8

• Central idea:
Segment time-frequency into sources
based on perceptual grouping cues

... principal cue is harmonicity

Brown & Cooke’94
Okuno et al.’99
Hu & Wang’04 ...

input
mixture

signal
features

(maps)

discrete
objectsFront end Object
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Spatial Info: Microphone Arrays
• If interference is diffuse, can simply 

boost energy from target direction
e.g. shotgun mic - delay-and-sum

off-axis spectral coloration
many variants - filter & sum, sidelobe cancelation ...
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Independent Component Analysis

• Separate “blind” combinations by maximizing 
independence of outputs
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Bell & Sejnowski ’95
Smaragdis ’98
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Environmental Scene Analysis
• Find the 

pieces a 
listener
would
report
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“Superhuman” Speech Analysis
• IBM’s 2006 Iroquois speech separation system

Key features:
detailed state combinations
large speech recognizer
exploits grammar constraints
34 per-speaker models

• “Superhuman” performance
... in some conditions

12

Kristjansson, Hershey et al. ’06
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ABSTRACT

We present a framework for speech enhancement and ro-
bust speech recognition that exploits the harmonic structure
of speech. We achieve substantial gains in signal to noise ra-
tio (SNR) of enhanced speech as well as considerable gains
in accuracy of automatic speech recognition in very noisy
conditions.

The method exploits the harmonic structure of speech
by employing a high frequency resolution speech model in
the log-spectrum domain and reconstructs the signal from
the estimated posteriors of the clean signal and the phases
from the original noisy signal.

We achieve a gain in signal to noise ratio of 8.38 dB for
enhancement of speech at 0 dB. We also present recognition
results on the Aurora 2 data-set. At 0 dB SNR, we achieve
a reduction of relative word error rate of 43.75% over the
baseline, and 15.90% over the equivalent low-resolution al-
gorithm.

1. INTRODUCTION

A long standing goal in speech enhancement and robust
speech recognition has been to exploit the harmonic struc-
ture of speech to improve intelligibility and increase recog-
nition accuracy.

The source-filter model of speech assumes that speech
is produced by an excitation source (the vocal cords) which
has strong regular harmonic structure during voiced phonemes.
The overall shape of the spectrum is then formed by a fil-
ter (the vocal tract). In non-tonal languages the filter shape
alone determines which phone component of a word is pro-
duced (see Figure 2). The source on the other hand intro-
duces fine structure in the frequency spectrum that in many
cases varies strongly among different utterances of the same
phone.

This fact has traditionally inspired the use of smooth
representations of the speech spectrum, such as the Mel-
frequency cepstral coefficients, in an attempt to accurately
estimate the filter component of speech in a way that is in-
variant to the non-phonetic effects of the excitation[1].

There are two observations that motivate the consider-
ation of high frequency resolution modelling of speech for
noise robust speech recognition and enhancement. First is
the observation that most noise sources do not have har-
monic structure similar to that of voiced speech. Hence,
voiced speech sounds should be more easily distinguish-
able from environmental noise in a high dimensional signal
space1.
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Fig. 1. The noisy input vector (dot-dash line), the corre-
sponding clean vector (solid line) and the estimate of the
clean speech (dotted line), with shaded area indicating the
uncertainty of the estimate (one standard deviation). Notice
that the uncertainty on the estimate is considerably larger in
the valleys between the harmonic peaks. This reflects the
lower SNR in these regions. The vector shown is frame 100
from Figure 2

A second observation is that in voiced speech, the signal
power is concentrated in areas near the harmonics of the
fundamental frequency, which show up as parallel ridges in

1Even if the interfering signal is another speaker, the harmonic structure
of the two signals may differ at different times, and the long term pitch
contour of the speakers may be exploited to separate the two sources [2].

0-7803-7980-2/03/$17.00 © 2003 IEEE 291 ASRU 2003
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Meeting Recorders
• Distributed mics in meeting room

• Between-mic correlations locate sources
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Janin et al. ’03
Ellis & Liu ’04
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Environmental Sound Classification
• Trained models using e.g. “texture” features

• Paradoxical results
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Audio Lifelogs
• Body-worn 

continuous recording

• Long time windows
for episode-scale
segmentation, 
clustering, and
classification
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Machines: Current Limitations
• Separating overlapping 

sources
blind source separation

• Separating individual 
events
segmentation

• Learning & classifying 
source categories
recognition of individual 
sounds and classes

16
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3. Virtual and Augmented Audio

• Audio signals can be 
effectively spatialized
by convolving with 
Head-Related Impulse 
Responses (HRIRs)

• Auditory localization also uses head-motion cues
17

Brown & Duda ’98
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Augmented Audio Reality
• Pass-through and/or mix-in

18

Proc. of the 11

th

Int. Conference on Digital Audio Effects (DAFx-08), Espoo, Finland, September 1-4, 2008

Figure 2: Left: Headset used in the evaluation. Microphone is on
the left and headphone outlet on the right. Middle: Headset fitted
in ear. Right: Prototype ARA mixer.

Although multimodal communication is in most cases pre-
ferred over a single modality, one of the strengths of ARA tech-
niques is that they can be used practically anywhere, anytime,
hands-free, and eyes-free.

This paper introduces results of a pilot study on the usability of
an ARA headset when used for longer periods of time in everyday-
life situations. In addition to general usability, the goal was also
to find out different usability aspects of such headsets. A group
of four subjects wore an ARA headset in everyday-life conditions
and reported the observations in a diary.

2. ARA MIXER AND HEADSET

An ARA mixer and headset was constructed and evaluated from
the point of view of pseudo-acoustic sound quality and usability
in practice. The headset was constructed from a noise-cancelling
headphone (Philips SHN2500) that contains insert type earphones
and electret microphones integrated together as shown in Fig. 2.
The original functionality was changed by replacing the external
electronics box for noise cancellation by an ARA mixer designed
in the project, shown also in Fig. 2.

The earphones fit quite tightly to the ear canal entrance, while
the microphones remain about 1 cm out from that point, which
could mean degradation of spatial perception and inconvenience
of using a telephone. The microphones have also some directivity
at highest frequencies, which means that sound coloration is de-
pendent on sound source direction. The main technical problem
was, however, the acoustic effects inside the ear canal and how to
compensate them as well as acoustic leakage of external sound to
the ear canal.

2.1. Coloration of Pseudo-acoustics due to the ARA Headset

The external ear modifies the sound field in many ways while
transmitting sound waves through the ear canal opening to the ear
drum. Normally, the ear canal is open and acts as a quarter wave-
length resonator with one end being closed by the eardrum and the
other end open to the air. For an open ear canal, the first ear canal
resonance occurs at around 2-4 kHz depending on the length of the
canal [4]. When a headphone blocks the ear canal, this resonance
disappears, and the sound field is perceived unnatural. In this case,
the ear canal is closed from both ends and it starts to act more like
a half-wavelength resonator [5]. The lowest resonance now occurs
at around 5-10 kHz depending on the length of the ear canal and
fitting of the earplug.

In order to make the headset acoustically more transparent,
equalization is needed to recreate the quarter-wave resonance and
to damp the half-wave resonance. Also the frequency response of
the headset causes coloration, which has to be equalized.

Figure 3: Filter sections in the equalizer.

The headset (especially an insert-type) attenuates the mid-range
and high frequencies coming from outside quite efficiently. How-
ever, there is always some leakage through the headset and also
between the skin and the cushion of the headphone [6]. Low fre-
quencies can leak through the headphone quite effectively. The
leaking from the real environment sums up in the ear canal with the
pseudo-acoustic representation produced by the transducer. This
summing causes coloration especially at low frequencies and dete-
riorates the pseudo-acoustic experience [1]. The amplification of
low frequencies has to be equalized.

2.2. Equalization Properties of the ARA Mixer

The ARA mixer of this study is presented in more detail in [2].
The mixer includes a mixing section for transmitting the micro-
phone signals to the earphones, and also for mixing external sound
sources to the pseudo-acoustic environment. The mixer includes
also an adjustable equalization section to make the pseudo-acoustics
sound as natural as possible. For lowest latency possible the mixer
was constructed with analog electronics. This is important since
the addition of the acoustic leakage and the delayed pseudo-acoustic
sound creates a comb filtering effect resulting in coloration. Even
a fraction of millisecond of latency in processing can be disturb-
ing. Typical digital audio hardware and software can make several
milliseconds of latency, and are therefore not suitable for the task.

The equalizer section has two parametric resonators and a high-
pass filter. The resonators can be used to recreate the missing
quarter-wave resonance, and to damp the added half-wave reso-
nance. The high-pass filter is used to compensate for boosted low
frequency reproduction due to sound leakage between the head-
phone and skin. Figure 3 shows a block diagram for the equaliza-
tion section of the mixer.

During the evaluation described in Section 3, two of the tes-
tees used individually tuned equalization, and the other two used
generic equalization. For individual equalization the headset re-
sponses were measured in an anechoic chamber. The transfer func-
tion from a loudspeaker in front of the testee into the ear canal of
the testee was first measured without a headset, and then the mea-
surement was repeated with a headset on. The lower plot in Fig.
4 shows the measurement results without a headset (black line)
and with a headset (grey line). There is no equalization used in
the headset in this case. The measurement data clearly demon-
strate the quarter wave resonance around 2.5 kHz when there is no
headset, and how it disappears when the headset is put on. Also,
pronounced low frequencies and the added half-wave resonance at
around 8 kHz are clearly visible. The upper plot in Fig. 4 shows
measurement data for the same subject when the equalization is ac-
curately tuned and switched on. For the generic (non-individual)
equalization, shown in Fig. 5, the equalization curve was computed
as the average of four different individual measurement data.

It should be noted that due to the simple implementation of
the equalization circuit, even the individual equalization setting
differ noticeably from the measured curve. Therefore, the individ-
ual equalizer setting is still an approximation of the real measured
curve. A small-scale quality evaluation with four listeners was

DAFX-2

Härmä et al. ’04
Hearium ’12
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Figure 1: Block diagram of an ARA system.

Figure 1 shows the block diagram of a complete ARA
system [1]. The first block on the left is used to create virtual
sounds, which can be embedded into the pseudoacoustic
representation. Furthermore, it can utilize location and
orientation information to keep virtual audio objects in place
while the user moves and turns his/her head. An essential
part in creating a realistic ARA system is the ARA mixer,
which routes and mixes all the signals involved in the system.
Furthermore, the ARA mixer takes care of the equalization
needed to create an acoustically transparent headset [4].
The headset is similar to common in-ear headphones, which
are nowadays widely used with portable media players and
smartphones. The preprocessing block can be used to send
the user’s binaural microphone signals to a distant user for
communication purposes. The ARA mixer and headset are
the user-worn devices of the system.

Even if the ARA headset would provide perfect sound
quality and hear-through experience, it still requires useful
applications in order to really benefit the user [5]. The
most promising applications include full audio bandwidth
(20 Hz–20 kHz) binaural telephony and audio conferenc-
ing with distant subjects panned around the user [6, 7].
Furthermore, the ARA technology enables location-based
information services, such as virtual tourist guides and audio
memos [1].

A previous prototype of the ARA mixer was constructed
with analog electronics to avoid latency [8]. This is important
because parts of the ambient sounds leak through and
around the headset into the ear canal and if the pseudoacous-
tic representation is delayed by the ARA mixer, it results in a
comb-filter effect when added to the leaked sound. However,
there is a great interest in replacing the bulky and expensive
analog components with digital signal processing (DSP).
The digital implementation would bring several benefits
when compared to the analog implementation. The benefits
include programmability, which would enable a convenient
use of individualized equalization curves; ease of design; pre-
cision. The downside is that a digital implementation intro-
duces more delay than an analog implementation, which
causes the comb filtering effect to the perceived signal. How-
ever, a digital implementation of the ARA mixer can be real-
ized using a low-latency DSP due to the pronounced atten-
uation capability of the in-ear headset, which can dramati-
cally reduce the comb-filter effect.

The aim of this paper is to study whether the ARA equali-
zer can be implemented using DSP and whether the latency

between the pseudoacoustic representation and leakage of
the headphone deteriorate the perceived sound excessively.
The digital implementation of the ARA equalizer could bring
many enhancements compared to the analog implementa-
tion, but only if the sound quality remains sufficiently good.

This paper is organized as follows. Section 2 describes the
principles of the ARA technology. Section 3 concentrates on
digital filters and their latency properties. Section 4 presents
the group delay estimation of a passive mechanism. Section 5
focuses on the implementation of the digital ARA equalizer.
Section 6 introduces a case study of a digital ARA mixer, and
Section 7 concludes the paper.

2. ARA Technology

The ARA hardware has been specially designed and built for
this purpose [4]. It consists of the ARA headset and the ARA
mixer. The basis of the ARA headset is that it must be able to
accurately reproduce the surrounding sound environment.
In order to do that, the headset has two external microphones
in addition to the earphone drivers. The quality of the repro-
duction of the pseudoacoustic environment must be suffi-
cient enough for allowing the users to continuously wear the
ARA headset for long periods of time nonstop.

However, because of the headphone acoustics, the pseu-
doacoustic representation is not an exact copy of the sur-
rounding sounds. Thus, an equalizer is needed to correct the
pseudoacoustic representation. Originally, the equalization
was designed to be analog in order to have as low latency as
possible [4]. Furthermore, the ARA mixer is used to embed
virtual sound objects into the user’s sound environment as
well as to connect all the additional devices into the ARA
system.

2.1. Headphone Acoustics. In normal listening with open
ears, the incident sound waves are modified by the listener’s
body, head, and outer ear. When sounds are recorded with
a conventional microphone situated away from the body
and played back through headphones, the modifications
caused by the body of the listener are lost. However, when
microphones are placed binaurally near the ear canal entran-
ces, the majority of these modifications are preserved.

The main difference when using in-ear headphones com-
pared to the listening with open ears is that the headphones
occlude the ear canals completely. An open ear canal acts as
a quarter-wavelength resonator, that is, like a tube with one

QuietPro+

Hearium
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4. Future Audio Analysis & Display
• Better Scene Analysis

overcoming the limitations of human hearing:
sensors, geometry

• Challenges
fine source discrimination
modeling & classification (language ID?)
Integrating through time: single location, sparse sounds

19

Object 1 percept
Sound mixture

Object 2 percept
Object 3 percept
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Ad-Hoc Mic Array
• Multiple sensors, 

real-time sharing
long-baseline
beamforming

• Challenges
precise relative (dynamic) localization
precise absolute registration

20
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Sound Visualization
• Making acoustic information visible

“synesthesia”

• Challenges
source formation & classification 
registration: sensors, display

21

O’Donovan et al. ’07

www.ultra-gunfirelocator.com
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Auditory Display
• Acoustic channel

complements 
vision
acoustic alarms
verbal information
“zoomed” ambience
instant replay

• Challenges
Information management 
& prioritization
maximally exploit 
perceptual organization

22

http://www.youtube.com/watch?v=v1uyQZNg2vE

http://www.youtube.com/watch?v=v1uyQZNg2vE
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Summary
• Human Scene Analysis

Spatial & Source information

• Computational Scene Analysis
Spatial & Source information
World knowledge

• Augmented Audition
Selective pass-through + insertion

23
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