Dan's slides for EARS PI mtg

- 4 slides on novel features based on linear predictor coefficients for the frequency (not time) domain
>basic signal model accepted at ICASSPO3
- A couple of slides on a very new idea to look for data-derived (ICA?) articulatory-style features

Temporal envelope features (Columbia)

- Temporal fine structure is lost (deliberately) in STFT features:

- Need a compact, parametric description...

Frequency-Domain Linear Prediction (FDLP)

- Extend LPC with LP model of spectrum

- 'Poles' represent temporal peaks:

- Features ~ pole bandwidth, 'frequency'
http://www.ee.columbia.edu/~marios/ctflp/ctflp.html

FDLP features for speech

- LP algorithm distributes fixed pole set within ~ 200 ms time window
>automatic selection of 'significant' times
- Pole bandwidth \square transient sharpness
$>1-\max \left(\mid Z_{i}\right)$ in several bands as feature
>help with classification of stop bursts etc.
- Pole frequency \square timing within window $>f_{n}-f_{n-1}$ as robust periodicity feature?

FDLP preliminary results

- Distribution of pole magnitudes for different phone classes (in 4 bands):

- NN Classifier Frame Accuracies:

plp12N	57.0%
plp12N+FDLP4	58.4%

Data-derived phonetic features (Columbia)

- Find a set of independent attributes to account for phonetic (lexical) distinctions >phones replaced by feature streams
- Will require new pronunciation models
>asynchronous feature transitions (no phones)
$>$ mapping from phonetics (for unseen words)

Joint work with Eric Fosler-Lussier

ICA for feature bases

- PCA finds decorrelated bases; ICA finds independent bases

- Lexically-sufficient ICA basis set?

Extra Slides

Speech Fragment Recognition (Columbia)

- Model match for missing features:

$\underset{\text { joint prob. }}{P(M, S \mid Y)}=P(M) \int P(X \mid M) \cdot \frac{P(X \mid Y, S)}{P(X)} d X \cdot P(S \mid Y)$ of model \& seg.
likelihood 'boost'
- .. for partial observations in noise
- .. or integrating partially-seen streams

Missing speech information

- Noise is not our primary concern; casual pronunciation is a big issue
>not missing Spectral information, but missing Phonetic information
- Can we model this as:
> 'missing' (i.e. non-articulated)
> 'features' (i.e. phonetic-style features) ... ?
- Need to locate information... $P(S \mid Y)$

Class-dependent information

- Locate information per subword unit
- Mutual Information on time-frequency plane over different phone classes

- $\pm 250 \mathrm{~ms} / 19$ bark, TIMIT phone ctrs

ICA for feature bases

- PCA finds decorrelated bases; ICA finds independent bases

- Find lexically-sufficient ICA basis set?

ICA for feature bases

- ICA coefficients ~ more independent:

- Looking for orthogonal subword features

