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Machine Listening

Extracting useful information from sound
O ... like animals do
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Environmental Sound Applications
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® Environment

Classification

O speech/music/
silent/machine
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® Nonspeech Sound Recognition

© Meeting room
Audio Event Classification

O sports events - cheers, bat/ball

sounds, ...




Consumer Video Dataset
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Obtaining Labeled Data

® Amazon Mechanical Turk
O |Os clips
09 64| videos In 4 weeks

Mark all the categories that appear in any part of the video.

Description:

Watch the entire video as more categories may appear over time.

Mark all the categories that appear in any part of the video.

Make sure the audio is on.

If no matching category is found, mark the box in front of "None of the categories matches".
For categories that appears to be relevant but you're not completely sure, please still mark it.
Please move over or click on the category name for detailed description.

Sport Celebration Others
Basketball [ Cat Graduation Music Performance
Birthday Non-music Perfort

2L Ady

Parade

Wedding Ceremony

Wedding Dance
£ None of the categories matches.
Biking I don't see any video playing.

Current Time: 10 sec

Submit |

Replay Continue Playing




Background Classification

® Baseline for soundtrack classification
O divide sound into short frames (e.g. 30 ms)
O calculate features (e.g. MFCC) for each frame
O describe clip by of frames (mean, covariance)

O ="bag of features”

TS _— MFCC
o e i = Covariance

Video & d | Matrix
SO u n dt raC k S ;0 MFCC covariance

MFCC &
features -

® (Classify by e.g. KL distance + SVM




Codebook Histograms

® Convert high-dim. distributions to multinomial

Global Per-Category
Gaussian Mixture Component
Mixture Model Histogram
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® (Classify by distance on histograms
o KL, Chi-squared
o+ SVM




Latent Semantic Analysis (LSA)

® Probabilistic LSA (pLSA) models each histogram

as a mixture of several ‘topics’
O .. each clip may have several things going on

® Topic sets optimized through EM
o p(fir | clip) = X iopics p(fir | topic) p(topic | clip)

GMM histogram ftrs “Topic” GMM histogram ftrs
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Background Classification Results
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® Wide range in performance
O audio (music, ski) vs. non-audio (group, night)
O large AP uncertainty on infrequent classes




Sound Texture Features

® Characterize sounds by
perceptually-sufficient statistics
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Sound Texture Features
® Test on MED 2010 —
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® (Contrasts in

feature sets
O correlation of labels...
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O combine well




Foreground Event Recognition

® Global vs.local class models
O tell-tale acoustics may be

O iry Iterative realignment of HMMs:
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Foreground Event HMMs
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Transient Features
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Nonnegative Matrix Factorization

® Decompose spectrograms into

templates 2 s
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NMF Transient Features

® | earn 20 patches from
Meeting Room Acoustic
Event data

® Compare to
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Speech Separation

® Speech recognition is finding best-fit
parameters - argmax P(W | X)
® Recognize mixtures with

O model + state sequence for each voice/source
O exploit sequence constraints, speaker differences

model 2

s1(1) ——> 51(2) s1(T)
s2(1) F——> 52(2) s2(T)

O separation relies on detalled speaker model
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Eigenvoices

® |dea: Find
speaker model parameter space

O generalize without
losing detall?

o Speaker models

. Eige nvoice mOdeI: . —= Speaker subspace bases

p = p + U w

adapted mean eigenvoice weights
model voice bases




Eigenvoice Bases
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Eigenvoice Speech Separation

® Factorial HMM analysis
with of source model parameters
= eigenvoice speaker adaptation
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Eigenvoice Speech Separation
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Eigenvoice Speech Separation

® FEigenvoices for Speech Separation task

O speaker adapted (54) performs midway between
speaker-dependent (5D) & speaker-indep (&)
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Binaural Cues

® Model interaural spectrum of each source
as stationary level and time differences:

L(w,t)
R(w, 1)

= a(w)e?" N(w, t)

® ec.g.at /5% in reverb:
IPD IPD residual

1




Model-Based EM Source Separation
and Localization (MESSL)
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O flexible inrtialization




MESSL Results

° improves results
O tradeoff between constraints & noisiness
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MESSL with Source Priors

® Fixed or adaptive speech models

Observations Parameters Posteriors

Per-source ITD

Each point in spectrogram is
explained by a source, delay,
and mixture component
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MESSL-EigenVoice Results

® Source models function as priors

® Interaural parameter spatial separation
O source model prior improves spatial estimate

Ground truth (12.04 dB DUET (3.84 dB)
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Noise-Robust Pitch Tracking

® |mportant for voice detection & separation

® Based on
O pitch from summary
autocorrelation rmalzed
over “good’ bands et
O trained classifier decides
which channels to include

® |mproves over

simple Wu criterion
O especially for mid SNR
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Noise-Robust Pitch Tracking
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Outstanding Issues

® Better object/event separation

O parametric models
O spatial information?

O computational
audrtory
scene analysis...

® |arge-scale analysis

® |ntegration with

[ 39

Frequency Proximity Common Onset  Harmonicity




Audio-Visual Atoms

Object-related features
from both audio (transients) & video (patches)
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Audio-Visual Atoms

of A-V co-occurrences
M Visual Atoms

| | MXN
visual atom visual atom A-V Atoms

mime Al
u Y“ﬁ codebook

learning

audio atom audio atom

N audio atoms




marching
people

+ parade |
sound

— B Visual only
| O Visual + Audio

(Vg
-
O
e’
<
I
-
R -
>
O
5
-
<

5 7-|H Audio only
8

0.

black suit
+ romantic




Summary

Machine Listening:
Getting useful information from sound

Background sound classification
... from whole-clip statistics!?

recognition
... by focusing on peak energy patches

Speech content is very important
... separate with pitch, models, ...
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