Environmental Sound Recognition and Classification

Dan Ellis

Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Eng., Columbia Univ., NY USA

dpwe@ee.columbia.edu

http://labrosa.ee.columbia.edu/

- Machine Listening
- 2. Background Classification
- 3. Foreground Event Recognition
- 4. Speech Separation
- 5. Open Issues

I. Machine Listening

- Extracting useful information from sound
 - o... like animals do

Environmental Sound Applications

Audio Lifelog
 Diarization

Consumer Video Classification & Search

Prior Work

EnvironmentClassification

speech/music/ silent/machine

Nonspeech Sound Recognition

- Meeting room
 Audio Event Classification
- sports events cheers, bat/ball sounds, ...

Consumer Video Dataset

- 25 "concepts" from Kodak user study
 - o boat, crowd, cheer, dance, ...

- Grab top 200 videos from YouTube search
 - then filter for quality, unedited = 1873 videos
 - manually relabel with concepts

Obtaining Labeled Data

Y-G Jiang et al. 2011

- Amazon Mechanical Turk
 - 10s clips
 - 9,641 videos in 4 weeks

2. Background Classification

- Baseline for soundtrack classification
 - o divide sound into short frames (e.g. 30 ms)
 - o calculate features (e.g. MFCC) for each frame
 - describe clip by statistics of frames (mean, covariance)
 - o = "bag of features"

Classify by e.g. KL distance + SVM

Codebook Histograms

Convert high-dim. distributions to multinomial

- Classify by distance on histograms
 - KL, Chi-squared
 - o + SVM

Latent Semantic Analysis (LSA)

- Probabilistic LSA (pLSA) models each histogram as a mixture of several 'topics'
 - o .. each clip may have several things going on
- Topic sets optimized through EM
 - $\circ p(ftr \mid clip) = \sum_{topics} p(ftr \mid topic) p(topic \mid clip)$

• use (normalized?) p(topic | clip) as per-clip features

Background Classification Results

K Lee & Ellis '10

- Wide range in performance
 - audio (music, ski) vs. non-audio (group, night)
 - large AP uncertainty on infrequent classes

Sound Texture Features

 Characterize sounds by perceptually-sufficient statistics McDermott Simoncelli '09 Ellis, Zheng, McDermott '11

- Subband distributions
 - & env x-corrs
 - Mahalanobis distance ...

Sound Texture Features

- Test on MED 2010 development data
 - 10 specially-collected manual labels

- Contrasts in feature sets
 correlation of labels...
- Perform~ same as MFCCs
 - o combine well

3. Foreground Event Recognition

Global vs. local class models

K Lee, Ellis, Loui '10

- tell-tale acoustics may be 'washed out' in statistics
- try iterative realignment of HMMs:

o "background" model shared by all clips

Foreground Event HMMs

- Training labels only at clip-level
- Refine models by EM realignment
- Use for classifying entire video...
 - or seeking to relevant part

Transient Features

Cotton, Ellis, Loui '11

- Transients = foreground events?
- Onset detectorfinds energy burstsbest SNR
- PCA basis to
 represent each
 300 ms x auditory freq
- "bag of transients"

Nonnegative Matrix Factorization

Decompose spectrograms into

Smaragdis Brown '03 Abdallah Plumbley '04 Virtanen '07

templates

+ activation

$$X = W \cdot H$$

- fast forgiving gradient descent algorithm
- 2D patches
- sparsity control...

NMF Transient Features

 Learn 20 patches from Meeting Room Acoustic Event data

Compare to MFCC-HMM detector

NMF more noise-robustcombines well ...

4. Speech Separation

- Speech recognition is finding best-fit parameters $\operatorname{argmax} P(W \mid X)$
- Recognize mixtures with Factorial HMM
 - o model + state sequence for each voice/source
 - o exploit sequence constraints, speaker differences

o separation relies on detailed speaker model

Eigenvoices

Kuhn et al. '98, '00 Weiss & Ellis '07, '08, '09

 Idea: Find speaker model parameter space

• generalize without losing detail?

• Eigenvoice model:

$$\mu=ar{\mu}+U$$
 w $+B$ h adapted mean eigenvoice weights channel channel model voice bases bases weights

Eigenvoice Bases

- Mean model
 - 280 states × 320 bins
 - = 89,600 dimensions

- Eigencomponents shift formants/ coloration
 - additional components for acoustic channel

Eigenvoice Speech Separation

Weiss & Ellis '10

- Factorial HMM analysis
 with tuning of source model parameters
 - = eigenvoice speaker adaptation

Eigenvoice Speech Separation

Find Viterbi path

$$\mu_2 = U\mathbf{w}_2 + \bar{\mu}$$

Update model parameters using EM algorithm from Kuhn et al., (2000)

Eigenvoice Speech Separation

- Eigenvoices for Speech Separation task
 - speaker adapted (SA) performs midway between speaker-dependent (SD) & speaker-indep (SI)

Binaural Cues

 Model interaural spectrum of each source as stationary level and time differences:

$$\frac{L(\omega, t)}{R(\omega, t)} = a(\omega)e^{j\omega\tau}N(\omega, t)$$

e.g. at 75°, in reverb:

1 0.5 (F/ps) 0 -0.5 -1 1 2 3 4 5 6 7
Frequency (kHz)

IPD residual

ILD

Model-Based EM Source Separation and Localization (MESSL)

- o can model more sources than sensors
- flexible initialization

MESSL Results

- Modeling uncertainty improves results
 - tradeoff between constraints & noisiness

Ground Truth

MESSL with Source Priors

Weiss, Mandel & Ellis '1 I

Fixed or adaptive speech models

MESSL-EigenVoice Results

- Source models function as priors
- Interaural parameter spatial separation
 - o source model prior improves spatial estimate

Noise-Robust Pitch Tracking

BS Lee & Ellis '11

- Important for voice detection & separation
- Based on channel selection Wu & Wang (2003)
 - pitch from summary autocorrelation
 over "good" bands
 - trained classifier decides
 which channels to include

- Improves over simple Wu criterion
 - especially for mid SNR

Noise-Robust Pitch Tracking

 Trained selection includes more off-harmonic channels

-20 -40

5. Outstanding Issues

- Better object/event separation
 - o parametric models
 - spatial information?
 - computational auditory scene analysis...

Barker et al. '05

- Large-scale analysis
- Integration with video

Audio-Visual Atoms

Jiang et al. '09

 Object-related features from both audio (transients) & video (patches)

Audio-Visual Atoms

Multi-instance learning of A-V co-occurrences

Audio-Visual Atoms

black suit + romantic music

marching people + parade sound

+ beach sounds

sand

Wedding

Parade

Beach

Summary

- Machine Listening:
 Getting useful information from sound
- Background sound classification
 ... from whole-clip statistics?
- Foreground event recognition
 ... by focusing on peak energy patches
- Speech content is very important
 ... separate with pitch, models, ...

References

- Jon Barker, Martin Cooke, & Dan Ellis, "Decoding Speech in the Presence of Other Sources," *Speech Communication* 45(1): 5-25, 2005.
- Courtenay Cotton, Dan Ellis, & Alex Loui, "Soundtrack classification by transient events," *IEEE ICASSP*, Prague, May 2011.
- Courtenay Cotton & Dan Ellis, "Spectral vs. Spectro-Temporal Features for Acoustic Event Classification," submitted to *IEEE WASPAA*, 2011.
- Dan Ellis, Xiaohong Zheng, Josh McDermott, "Classifying soundtracks with audio texture features," IEEE ICASSP, Prague, May 2011.
- Wei Jiang, Courtenay Cotton, Shih-Fu Chang, Dan Ellis, & Alex Loui, "Short-Term Audio-Visual Atoms for Generic Video Concept Classification," *ACM MultiMedia*, 5-14, Beijing, Oct 2009.
- Keansub Lee & Dan Ellis, "Audio-Based Semantic Concept Classification for Consumer Video," *IEEE Tr. Audio, Speech and Lang. Proc.* 18(6): 1406-1416, Aug. 2010.
- Keansub Lee, Dan Ellis, Alex Loui, "Detecting local semantic concepts in environmental sounds using Markov model based clustering," *IEEE ICASSP*, 2278-2281, Dallas, Apr 2010.
- Byung-Suk Lee & Dan Ellis, "Noise-robust pitch tracking by trained channel selection," submitted to *IEEE WASPAA*, 2011.
- Andriy Temko & Climent Nadeu, "Classification of acoustic events using SVM-based clustering schemes," *Pattern Recognition* 39(4): 682-694, 2006
- Ron Weiss & Dan Ellis, "Speech separation using speaker-adapted Eigenvoice speech models," Computer Speech & Lang. 24(1): 16-29, 2010.
- Ron Weiss, Michael Mandel, & Dan Ellis, "Combining localization cues and source model constraints for binaural source separation," *Speech Communication* 53(5): 606-621, May 2011.
- Tong Zhang & C.-C. Jay Kuo, "Audio content analysis for on-line audiovisual data segmentation," *IEEE TSAP* 9(4): 441-457, May 2001