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Organization of sound mixtures

 

• Core operation:

 

Converting continuous, scalar signal
into discrete, symbolic representation
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Positioning sound organization

 

• Draws on many techniques

• Abuts/overlaps various areas
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About auditory perception

 

• Received waveform is a mixture

 

- two sensors, N signals ...
- need knowledge-based constraints

 

• Psychoacoustics: 
the study of human sound organization

 

- ‘auditory scene analysis’ (Bregman’90)

 

• Auditory perception is ecologically grounded

 

- scene analysis is preconscious (

 

→

 

 illusions)
- perceived organization:

real-world objects + events (transient)
- subjective 

 

not

 

 canonical (ambiguity)
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Key themes for Lab ROSA

 

http://www.ee.columbia.edu/~dpwe/LabROSA/

 

• Sound organization: construct hierarchy

 

- at an instant (sources)
- along time (segmentation)

 

• Scene analysis

 

- find attributes according to objects
- use attributes to form objects
- ... plus constraints of knowledge

 

• Exploiting large data sets (the ASR lesson)

 

- supervised/labeled: pattern recognition
- unsupervised: structure discovery, clustering

 

• Special cases:

 

- speech recognition
- other source-specific recognizers

 

• ... within a ‘complete explanation’
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Automatic Speech Recognition (ASR)

 

• Standard speech recognition structure:

• ‘State of the art’ word-error rates (WERs):

 

- 2% (dictation) - 30% (telephone conversations)

 

• Can use multiple streams...
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Tandem speech recognition

 

(with Hermansky, Sharma & Sivadas/OGI, Singh/CMU)

 

• Neural net estimates phone posteriors;
but Gaussian mixtures model finer detail

• Combine them!

• Train net, then train GMM on net output

 

- GMM is ignorant of net output ‘meaning’
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Tandem system results

 

• It works very well (‘Aurora’ noisy digits):

 

System-features Avg. WER 20-0 dB Baseline WER ratio

 

HTK-mfcc 13.7% 100%

Neural net-mfcc 9.3% 84.5%

Tandem-mfcc 7.4% 64.5%

 

Tandem-msg+plp 6.4% 47.2%
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Relative contributions

 

• Approx relative impact on baseline WER ratio
for different component:
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Inside Tandem systems:
What’s going on?

 

• Visualizations of the net outputs

• Neural net normalizes away noise
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Tandem feature space ‘magnification’

 

• Neural net performs a nonlinear remapping of 
the feature space

 

- small changes across critical boundaries
result in large output changes
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Alarm sound detection

 

• Alarm sounds have particular structure

 

- people ‘know them when they hear them’
- build a generic detector?

 

• Isolate alarms in sound mixtures

 

- representation of energy in time-frequency
- formation of atomic elements
- grouping by common properties (onset &c.)
- classify by attributes...
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Computational Auditory Scene Analysis
(CASA)

 

• Implement psychoacoustic theory? (Brown’92)

 

- what are the features?  how are they used?

 

• Additional ‘knowledge’ needed (Klassner’96)
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Prediction-driven CASA

 

• Data-driven (bottom-up) fails for noisy, 
ambiguous sounds (most mixtures!)

• Need top-down constraints:

 

- fit vocabulary of generic elements to sound
... bottom of a hierarchy?

- account for entire scene
- driven by prediction failures
- pursue alternative hypotheses
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PDCASA example
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Missing data recognition & CASA

 

(with Barker, Cooke, Green/Sheffield)

 

• Missing-data recognition

 

- integrate across ‘don’t-know’ values
- ‘perfect’ mask 

 

→

 

 excellent performance in noise

 

• Multi-source decoder

 

- Viterbi search of sound-fragment interpretations

 

• CASA for masks/fragments

 

- larger fragments 

 

→

 

 quicker search
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Meeting recorder
(with ICSI, UW, SRI, IBM)

• Microphones in conventional meetings
- for transcription/summarization/retrieval
- informal, overlapped speech

• Data collection (ICSI and ...):

- 10s of hours collected, ongoing
- now being transcribed
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Meeting recorder: Research issues

• Preliminary analysis
- transcription & forced alignment
- ground truth in turns/overlaps
- preliminary distant-mic recordings

• Research areas
- meeting dialog: overlaps, turns etc.
- language modeling for meetings
- feature design for distant acoustics

• Applications
- information retrieval from meetings
- ‘mapping’ meeting content
- sociological analysis of meeting behavior
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Audio Information Retrieval

• Searching in a database of audio
- speech .. use ASR
- text annotations .. search them
- sound effects library?

• e.g. Muscle Fish “SoundFisher” browser
- define multiple ‘perceptual’ feature dimensions
- search by proximity in (weighted) feature space

- features are ‘global’ for each soundfile,
no attempt to separate mixtures 
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CASA for audio retrieval

• When audio material contains mixtures, 
global features are insufficient

• Retrieval based on element/object analysis:

- features are calculated over grouped subsets
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A ‘machine listener’

• Goal: Unsupervised structure discovery

• What can you do with a large unlabeled training 
set (e.g. broadcast)?
- bootstrap learning: look for common patterns
- have to learn generalizations in parallel:

e.g. self-organizing maps, EM HMMs
- post-filtering by humans may find ‘meaning’ in 

clusters

Broadcast
receiver

Acoustic event
extraction

Unsupervised
clustering

Event
templates

Interactive
refinement

Audio Segment
features

Class
definitions



Lab
ROSA

ROSAtalk  - Dan Ellis 2001-01-11 - 25

Audio-video-text content analysis
(with Shih-Fu Chang, Kathleen McKeown)

• Audio and video provide complementary info
- correlate object features to define templates?

• Associated text annotations provide a very 
small amount of labeling
- .. but for a very large number of examples

– sufficient to obtain purchase?
- build a ‘multimedia lexicon’ for question-

answering

Scene alignment and
segmentation

Clustering and
structure discovery

Interactive
refinement

Multimedia
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•  Summary
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Applications for sound organization

What do people do with their ears?

• Human-computer interface
- .. includes knowing when (& why) you’ve failed

• Robots
- intelligence requires perceptual awareness
- Sony’s AIBO: dog-hearing

• Archive indexing & retrieval
- pure audio archives
- true multimedia content analysis

• Content ‘understanding’
- intelligent classification & summarization

• Autonomous monitoring

• Broader ‘structure discovery’ algorithms
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•  Broadcast
•  Movies
•  Lectures

•  Meetings
•  Personal recordings
•  Location monitoring

•  Speech recognition
•  Speech characterization
•  Nonspeech recognition

• Object-based structure discovery & learning

•  Scene analysis
•  Audio-visual integration
•  Music analysis

•  Structuring
•  Search
•  Summarization
•  Awareness
•  Understanding
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Conclusions

• New classification schemes for ASR
- ... combining multiple approaches/sources

• But sound is more than just speech!
- speech is a special case
- need to deal with the ‘other stuff’

• Object-based analysis
- it’s what people do
- the world presents acoustic mixtures

• Whole-scene representation
- it’s what people do
- provides mutual constraints of overlap

• Broad range of approaches
for a broad range of phenomena


