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Learning from Music

® A |ot of music data available &

o e.g 60G of MP3
~ | 000 hr of audio/ | 5k tracks

® What can we do with it?
o implicit definition of ‘music’
® Quality vs. quantity
o Speech recognition lesson: —
|Ox data, |/10th annotation, twice as useful

® Motivating Applications
o music similarity / classification
o computer (assisted) music generation

o Insight Into music +
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Ground Truth Data

File: /Users/dpwe/projects/aclass/aimee.wa
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® Unsupervised structure discovery possible
o ..but labels help to indicate what you want

® Weak annotation sources
o artist-level descriptions
o symbol sequences without timing (MIDI)
o errorful transcripts

® Evaluation requires ground truth

o limriting factor in Music IR evaluations! 3
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Music Similarity Browsing

® Musical information overload
o record companies filter/categorize music
O an automatic system would be less odious

® Connecting audio and preference
o map to a ‘semantic space’!
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Anchor Space

® Frame-by-frame high-level categorizations
Cepstral Features Anchor Space Features
O compare to

raw features!?
'
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‘Playola’ Similarity Browser

Get Playola Selections: you recently heard  [#4 FGo! |
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Semantic Bases

® What should the ‘anchor’ dimensions be!?
O hand-chosen genres! X
o somehow choose automatically
® “Community metadata’:
Use Web to get words/phrases..

o ..that are informative adj Term | K-L bits || np Term K-L bits
: aggressive | 0.0034 reverb 0.0064
about artists softer 0.0030 || the noise 0.0051
synthetic 0.0029 new wave 0.0039
O . and tha—t can be punk 0.0024 elvis costello 0.0036
' : sleepy 0.0022 the mud 0.0032
p red | Cted fro m au d 10 funky 0.0020 his guitar 0.0029
. noisy 0.0020 guitar bass and drums | 0.0027
® Reﬁ ne C I daSSl| ﬁ ers to angular 0.0016 instrumentals 0.0021
b I . I I acoustic 0.0015 melancholy 0.0020
oW a I"tl St cve romantic 0.0014 three chords 0.0019

o e.g by EM! T
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Transcription as Classification

® Signal models typically used for transcription
O harmonic spectrum, superposition

® But ...trade domain knowledge for data
o transcription as pure classification problem:

—— ;("C0"|Audio)
Audio : — p("C#0"|Audio)
Trained — p("DO"‘Audlo)
classifier ——— p("D#0"|Audio)
3 p("E0"|Audio)
——— p("F0"|Audio)

o single N-way discrimination for “melody”
o per-note classifiers for polyphonic transcription
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Classifier Transcription Results
® Trained on MIDI syntheses (32 songs)

o SMO SVM (Weka)

® Tested on ISMIR MIREX 2003 set

o foreground/background separation

midit: ref (white) and 32_V/1024SM (blue) 2004-09-29
T T

Frame-level pitch concordance - - . -3
system “jazz3” overall g
fg+bg 71.5% 44.3% e i
so- [em———— -
just fg 56.1% 45.4% W= = =
. 0 m B [ TR
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Forced-Alignment of MIDI

® MIDI is a handy description of music
o notes, Instruments, tracks
o ..to drive synthesis

® Align MIDI ‘replicas’ to get GTruth for audio

o estimate time-warp relation
"an_'t yoq wgnt mg" (Hu;rnan= Leagug){ ve_rse1

I_ e b 0520 o1 22 23 e 25 26 2 time?sec >
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Melody Clustering

® Goal: Find ‘fragments’ that recur in melodies
O ..across large music database
o ..trade data for model sophistication

data extraction fragments clustering

{

Top
clusters

Training || Melody [ J| S5second | _ VQ

® Data sources
o pitch tracker, or MIDI training data

® Melody fragment representation
o DCT(1:20) - removes average, smoothes detall
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Melody clustering results

® Clusters match underlying contour:
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® Finds some T Y

similarities: ’°
o eg Pink + Nsync
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Eigenrhythms: Drum Pattern Space

® Pop songs built on repeating “drum loop”
o variations on a few bass, snare, hi-hat patterns

* * * *
hihat -~ .
snare - | L | | | o :
bass |- | | | 1] N
I | 1 T I I I I

1 2 3 4 5 6 7 8 9I time / sec

o
® Eigen-analysis (or ...) to capture variations?
o by analyzing lots of (MIDI) data, or from audio

® Applications
O music categorization
o "beat box" synthesis

O Insight
Lab 5 x
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Aligning the Data

® Need to align patterns prior to modeling...

Original drum pattern (train/hiphop/nEpisode)
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Eigenrhythms (PCA)

Mean pattern Eigenrhythm 1
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® Need 20+ Eigenvectors for good coverage
of 100 training patterns (1200 dims)
® Eigenrhythms both add and subtract
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Posirhythms (NMF)
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® Nonnegative: only adds beat-weight
® Capturing some structure
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PCA(1,2) projection (16% corr)

Eigenrhythms for Classification

® Projections in Eigenspace / LDA space

LDA(1,2) projection (33% corr)
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Eisenrhythm BeatBox

® Resynthesize rhythms from eigen-space

806 X gengui
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Event Extraction

® Music often contains many repeated events
o notes, drum sounds
o but: usually overlapped..

® Vector Quantization finds common patterns:
f

Event
dictionary

| E—— Find | | Combine &
——— > alignments re-estimate

Training
data

O representation...
o aligning/matching...
o how much coverage required? ¥
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Drum Track Extraction

Initialize dictionary with Bass Drum, Snare

® Match only on a few spectral peaks
o narrowband energy most likely to avoid overlap

® Median filter to re-estimate template
o .. after normalizing amplitudes
o can pick up partials from common notes
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Generalized Event Detection

® Based on ‘Shazam’ audio fingerprints (VVang'03)
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o relative timing of F -F,-AT triples discriminates pieces

o narrowband features to avoid collision (again)

® Fingerprint events, not recordings:

choose top triples, look for repeats
Lab  ©° rank reduction of triples x time matrix ¥
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Event detection results

® Procedure
o find hash triples
o cluster them
o patterns in hash co-occurrence = events!

150 e
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Conclusions

Anchor >| Similarity/
models recommend'n
N W
Semantic § __ ! : :
bases 1 !
Music Melody [ J| Fragment - :
audio extraction clustering o
: Synthesis/
Drums N Eigen- E - _:_ > generation
extraction rhythms |- - -
Eveqt L __
extraction :
® | ots of data
+ noisy transcription
+ weak clustering
o ° ° 7 +
Lab = musical insights?
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Approaches to
Chord Transcription

® Note transcription, then note—chord rules
o like labeling chords in MIDI transcripts

® Spectrum—chord rules

o le. find harmonic peaks, use knowledge of likely
notes In each chord

® Trained classifier
o don't use any “expert knowledge”
o Instead, learn patterns from labeled examples

® Train ASR HMMs with chords = words

v
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Chord Sequence Data Sources

® All we need are the chord sequences
for our training examples
o Hal Leonard “Paperback Song Series”
- manually retyped for 20 songs:

( 1) 1) i« ) ' »)
Beatles for Sale”’,"Help”,“"Hard Day’'s Night
The Beatles - Hard Day's Night
g 5 # The Beatles - A Hard Day's Night
- #
D G Cadd9 G F6 G Cadd9 G F6 G C D G C9 G
= 4 G Cadd9 G F6 G Cadd9 G F6 G C D G C9 G
Bm Em Bm G Em C D G Cadd9 G F6 G Cadd9 G
3 F6 GCDGC9 GD
GC7GF6GC7GF6GCDGCY9 G Bm Em Bm
5 G Em C D
G Cadd9 G F6 G Cadd9 G F6 G C D G C9 G
C9 G Cadd9 Fadd9
1
0 5 10 15 20 25
time / sec
Lab - hand-align chords for 2 test examples +
Learning from Music - Ellis 2004-12-18 p. 26/24

Laboratory for the Recognition and
QOrganization of Speech and Audio

CorumBIa [JNIVERSITY
IN THE CITY OF NEW YORK



Chord Results

® Recognition weak, but forced-alignment OK

Frame-level Accuracy

Beatles - Beatles For Sale - Eight Days a Week (4096pt)

i i
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(ROT helps generalization) sz E—
true 5 5 o 5
align = 5 e e
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X
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What did the models learn?

® Chord model centers (means)

Lab
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indicate chord ‘templates’:

PCP_ROT family model means (train18)
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