What can we Learn from Large Music Databases?

Dan Ellis

Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Engineering, Columbia University, NY USA
dpwe@ee.columbia.edu

1. Learning Music
2. Music Similarity
3. Melody, Drums, Event extraction
4. Conclusions

Learning from Music

- A lot of music data available o e.g. 60G of MP3 $\approx 1000 \mathrm{hr}$ of audio/ I 5 k tracks
- What can we do with it?
- implicit definition of 'music'
- Quality vs. quantity
- Speech recognition lesson:

I $0 \times$ data, I/ I Oth annotation, twice as useful

- Motivating Applications
- music similarity / classification
- computer (assisted) music generation
- insight into music

Ground Truth Data

- A lot of unlabeled music data available o manual annotation is much rarer
- Unsupervised structure discovery possible o .. but labels help to indicate what you want
- Weak annotation sources
- artist-level descriptions
- symbol sequences without timing (MIDI)
- errorful transcripts
- Evaluation requires ground truth
- limiting factor in Music IR evaluations?

Talk Roadmap

Music Similarity Browsing

- Musical information overload
- record companies filter/categorize music
o an automatic system would be less odious
- Connecting audio and preference
- map to a 'semantic space'?

Anchor Space

- Frame-by-frame high-level categorizations
o compare to raw features?

- properties in distributions? dynamics?

‘Playola’ Similarity Browser

Lab

Semantic Bases

- What should the 'anchor' dimensions be?
- hand-chosen genres? X
o somehow choose automatically
- "Community metadata": Use Web to get words/phrases.. - .. that are informative about artists
- .. and that can be predicted from audio
- Refine classifiers to below artist level

adj Term	K-L bits	np Term	K-L bits
aggressive	0.0034	reverb	0.0064
softer	0.0030	the noise	0.0051
synthetic	0.0029	new wave	0.0039
punk	0.0024	elvis costello	0.0036
sleepy	0.0022	the mud	0.0032
funky	0.0020	his guitar	0.0029
noisy	0.0020	guitar bass and drums	0.0027
angular	0.0016	instrumentals	0.0021
acoustic	0.0015	melancholy	0.0020
romantic	0.0014	three chords	0.0019

2. Transcription as Classification

- Signal models typically used for transcription
- harmonic spectrum, superposition
- But ... trade domain knowledge for data
- transcription as pure classification problem:

o single N-way discrimination for "melody"
o per-note classifiers for polyphonic transcription

Classifier Transcription Results

- Trained on MIDI syntheses (32 songs)
- SMO SVM (Weka)
- Tested on ISMIR MIREX 2003 set
- foreground/background separation

Frame-level pitch concordance

system	"jazz3"	overall
fg+bg	71.5%	44.3%
just fg	56.1%	45.4%

Lab

Forced-Alignment of MIDI

- MIDI is a handy description of music
- notes, instruments, tracks
- .. to drive synthesis
- Align MIDI 'replicas' to get GTruth for audio o estimate time-warp relation

Melody Clustering

- Goal: Find 'fragments' that recur in melodies
- .. across large music database
- .. trade data for model sophistication

- Data sources
- pitch tracker, or MIDI training data
- Melody fragment representation
o DCT(I:20) - removes average, smoothes detail

Melody clustering results

- Clusters match underlying contour:

- Finds some similarities:
o e.g. Pink + Nsync

Eigenrhythms: Drum Pattern Space

- Pop songs built on repeating "drum loop"
- variations on a few bass, snare, hi-hat patterns

- Eigen-analysis (or ...) to capture variations? - by analyzing lots of (MIDI) data, or from audio
- Applications
- music categorization
- "beat box" synthesis
o insight

Aligning the Data

- Need to align patterns prior to modeling...

tempo (stretch): by inferring BPM \& normalizing

Original pattern compressed $98 \rightarrow 120$ BPM
downbeat (shift): correlate against 'mean' template

Eigenrhythms (PCA)

Mean pattern

Eigenrhythm 2

Eigenrhythm 4

Eigenrhythm 1

Eigenrhythm 3

Eigenrhythm 5

- Need 20+ Eigenvectors for good coverage of 100 training patterns (I200 dims)
- Eigenrhythms both add and subtract

Lab

Posirhythms (NMF)

Posirhythm 1

Posirhythm 3

Posirhythm 5

- Nonnegative: only adds beat-weight
- Capturing some structure

Lab
Learning from Music - Ellis
2004-I2-I8 p. I7/24

Eigenrhythms for Classification

- Projections in Eigenspace / LDA space

- PCA3: 20\% correct

Lab | o LDA4: 36% correct | | |
| :--- | :--- | :--- |
| Learning from Music - Ellis | 2004-I2-I8 | p. I8/24 |

Eigenrhythm BeatBox

- Resynthesize rhythms from eigen-space

5. Event Extraction

- Music often contains many repeated events
- notes, drum sounds
o but: usually overlapped...
- Vector Quantization finds common patterns:

o representation...
o aligning/matching...
o how much coverage required?

Drum Track Extraction

- Initialize dictionary with Bass Drum, Snare
- Match only on a few spectral peaks
o narrowband energy most likely to avoid overlap
- Median filter to re-estimate template
o .. after normalizing amplitudes
o can pick up partials from common notes

Generalized Event Detection

- Based on ‘Shazam’ audio fingerprints (Wang’03)

- relative timing of $F_{1}-F_{2}-\Delta T$ triples discriminates pieces
- narrowband features to avoid collision (again)
- Fingerprint events, not recordings: choose top triples, look for repeats - rank reduction of triples \times time matrix

Event detection results

- Procedure
- find hash triples
- cluster them
- patterns in hash co-occurrence = events?

Lab

Conclusions

- Lots of data
+ noisy transcription
+ weak clustering
\Rightarrow musical insights?

Approaches to Chord Transcription

- Note transcription, then note \rightarrow chord rules
- like labeling chords in MIDI transcripts
- Spectrum \rightarrow chord rules
- i.e. find harmonic peaks, use knowledge of likely notes in each chord
- Trained classifier
- don't use any "expert knowledge"
- instead, learn patterns from labeled examples
- Train ASR HMMs with chords \approx words

Chord Sequence Data Sources

- All we need are the chord sequences for our training examples
- Hal Leonard "Paperback Song Series"
- manually retyped for 20 songs:
"Beatles for Sale", "Help", "Hard Day's Night"


```
# The Beatles - A Hard Day's Night
G Cadd9 G F6 G Cadd9 G F6 G C D G C9 G
G Cadd9 G F6 G Cadd9 G F6 G C D G C9 G
Bm Em Bm G Em C D G Cadd9 G F6 G Cadd9 G
    F6 G C D G C9 G D
G C7 G F6 G C7 G F6 G C D G C9 G Bm Em Bm
    G Em C D
G Cadd9 G F6 G Cadd9 G F6 G C D G C9 G
C9 G Cadd9 Fadd9
```

- hand-align chords for 2 test examples

Chord Results

- Recognition weak, but forced-alignment OK

Frame-level Accuracy

Feature	Reco	Ali
C	8.7	22.0\%
PCP_ROT	21.7\%	76.0\%
MFCCs are poor (random $\sim 3 \%$) (can overtrain) PCPs better (ROT helps generalization)		

Beatles - Beatles For Sale - Eight Days a Week (4096pt)

Lab
Learning from Music - Ellis

What did the models learn?

- Chord model centers (means) indicate chord 'templates':

