Scene Analysis for Speech and Audio Recognition

- Sound, Mixtures & Learning
- **Computational Auditory Scene Analysis**
- **Recognizing Speech in Noise**
- **Using Models in Parallel**
- **The Listening Machine**

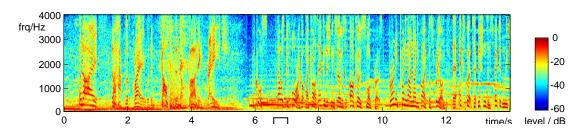
Dan Ellis <dpwe@ee.columbia.edu>

Laboratory for Recognition and Organization of Speech and Audio (LabROSA)

> Columbia University, New York http://labrosa.ee.columbia.edu/

1

Sound, Mixtures & Learning



Sound

- carries useful information about the world
- complements vision

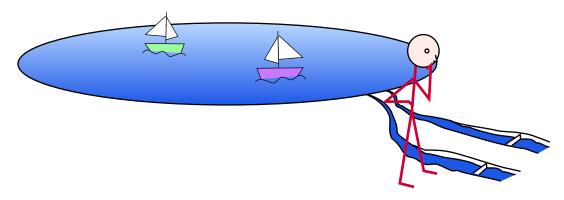
Mixtures

- .. are the rule, not the exception
- medium is 'transparent' with many sources
- must be handled!

Learning

- the speech recognition lesson:
 let the data do the work
- ... like listeners do

The problem with recognizing mixtures



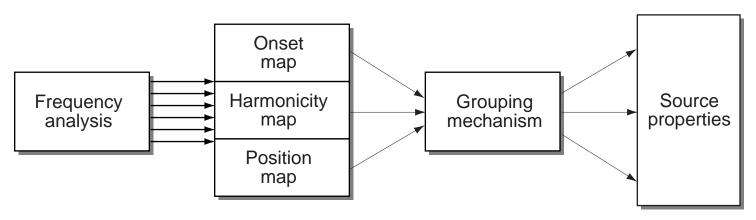
"Imagine two narrow channels dug up from the edge of a lake, with handkerchiefs stretched across each one. Looking only at the motion of the handkerchiefs, you are to answer questions such as: How many boats are there on the lake and where are they?" (after Bregman'90)

- **Auditory Scene Analysis: describing a complex** sound in terms of high-level sources/events
 - ... like listeners do
- Hearing is ecologically grounded
 - reflects natural scene properties = constraints
 - subjective, not absolute

Auditory Scene Analysis

(Bregman 1990)

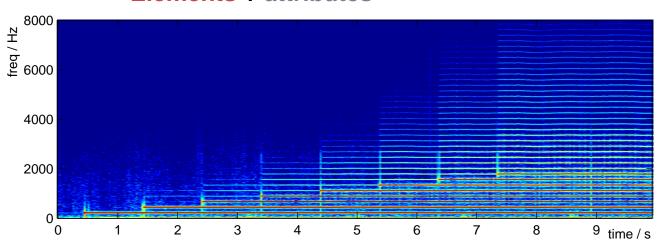
- How do people analyze sound mixtures?
 - break mixture into small *elements* (in time-freq)
 - elements are *grouped* in to sources using *cues*
 - sources have aggregate attributes
- Grouping 'rules' (Darwin, Carlyon, ...):
 - cues: common onset/offset/modulation, harmonicity, spatial location, ...



(after Darwin, 1996)

Cues to simultaneous grouping

Elements + attributes

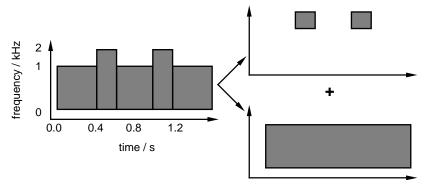


Common onset

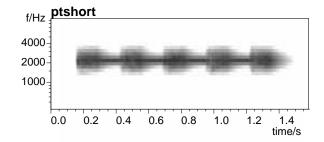
- simultaneous energy has common source
- Periodicity
 - energy in different bands with same cycle
- Other cues
 - spatial (ITD/IID), familiarity, ...

The effect of context

- Context can create an 'expectation':
 i.e. a bias towards a particular interpretation
- Bregman's old-plus-new principle:



- a change is preferably interpreted as addition
- E.g. the continuity illusion



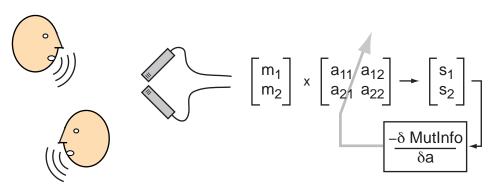
Approaches to sound mixture recognition

- Separate signals, then recognize
 - e.g. CASA, ICA
 - nice, if you can do it
- Recognize combined signal
 - 'multicondition training'
 - combinatorics...
- Recognize with parallel models
 - full joint-state space?
 - divide signal into fragments,
 then use missing-data recognition

Independent Component Analysis (ICA)

(Bell & Sejnowski 1995 etc.)

 Drive a parameterized separation algorithm to maximize independence of outputs



Advantages:

- mathematically rigorous, minimal assumptions
- does not rely on prior information from models

Disadvantages:

- may converge to local optima...
- separation, not recognition
- does not exploit prior information from models

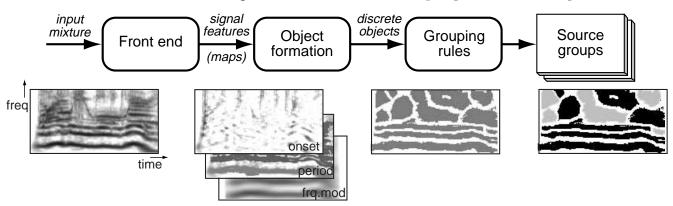
Outline

- 1 Sound, Mixtures & Learning
- 2 Computational Auditory Scene Analysis
 - Data-driven
 - Top-down constraints
- 3 Recognizing Speech in Noise
- 4 Using Models in Parallel
- 5 The Listening Machine

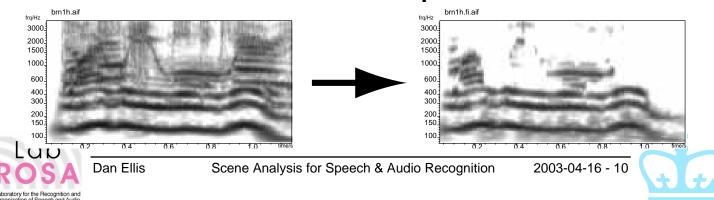
Computational Auditory Scene Analysis: The Representational Approach

(Cooke & Brown 1993)

Direct implementation of psych. theory



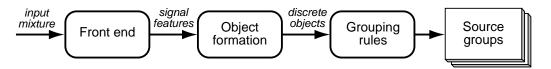
- 'bottom-up' processing
- uses common onset & periodicity cues
- Able to extract voiced speech:



Adding top-down constraints

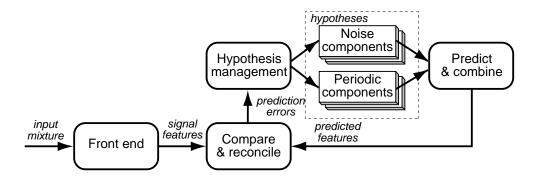
Perception is not direct but a search for plausible hypotheses

Data-driven (bottom-up)...



- objects irresistibly appear

vs. Prediction-driven (top-down)

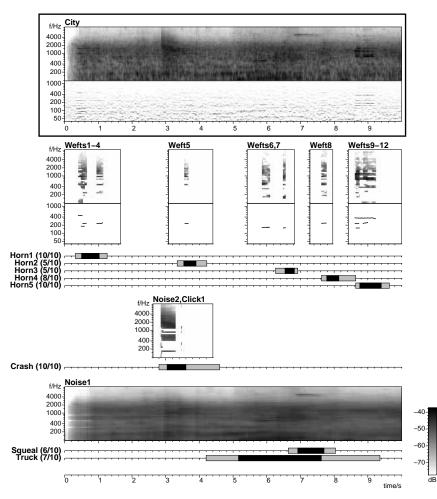


- match observations
 with parameters of a world-model
- need world-model constraints...

Prediction-Driven CASA

(Ellis 1996)

Explain a complex sound with basic elements



Aside: Evaluation

- Evaluation is a big problem for CASA
 - what is the goal, really?
 - what is a good test domain?
 - how do you measure performance?
- SNR improvement
 - tricky to derive from before/after signals: correspondence problem
 - can do with fixed filtering mask;
 but rewards removing signal as well as noise
- Speech Recognition (ASR) improvement
 - recognizers typically very sensitive to artefacts
- 'Real' task?
 - mixture corpus with specific sound events...

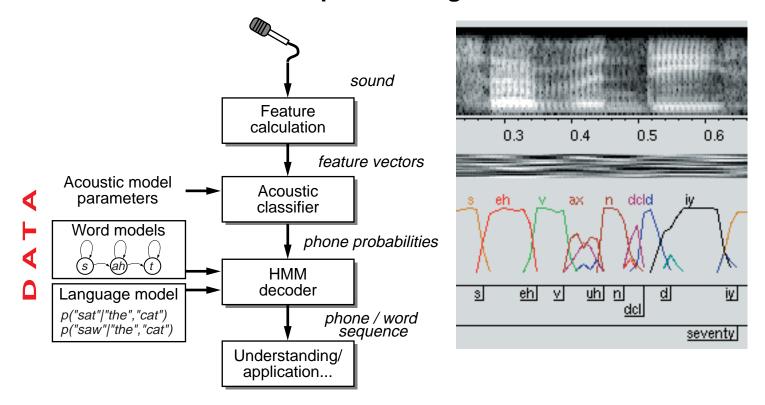
Outline

- 1 Sound, Mixtures & Learning
- 2 Computational Auditory Scene Analysis
- 3 Recognizing Speech in Noise
 - Conventional ASR
 - Tandem modeling
- 4 Using Models in Parallel
- 5 The Listening Machine

3

Recognizing Speech in Noise

Standard speech recognition structure:



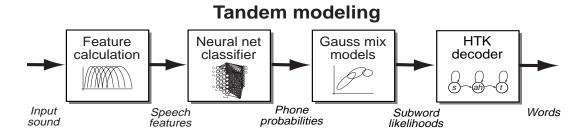
- How to handle additive noise?
 - just train on noisy data: 'multicondition training'

Tandem speech recognition

(with Hermansky, Sharma & Sivadas/OGI, Singh/CMU, ICSI)

- Neural net estimates phone posteriors; but Gaussian mixtures model finer detail
- Combine them!

Hybrid Connectionist-HMM ASR Conventional ASR (HTK) Feature Neural net Gauss mix Noway Feature HTK decodér calculation classifier calculation models decoder Words Phone Subword Words Input Speech Input Speech probabilities likelihoods sound features sound features

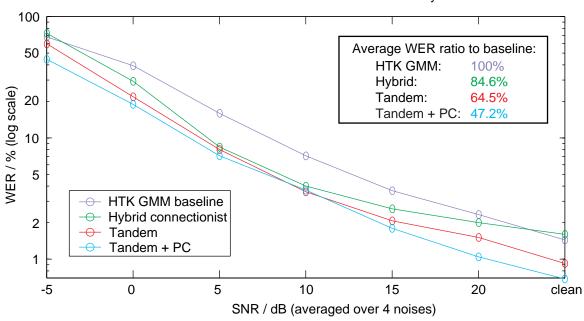


- Train net, then train GMM on net output
 - GMM is ignorant of net output 'meaning'

Tandem system results

It works very well ('Aurora' noisy digits):

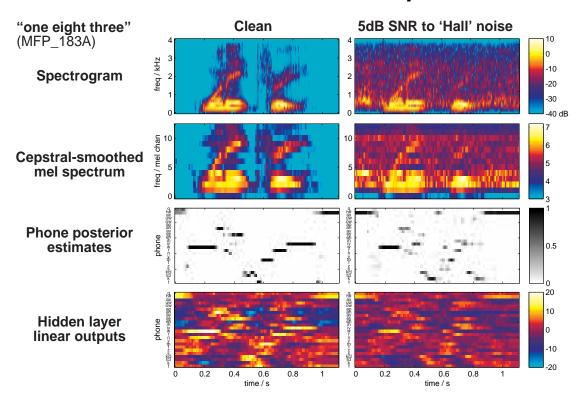
WER as a function of SNR for various Aurora99 systems



System-features	Avg. WER 20-0 dB	Baseline WER ratio	
HTK-mfcc	13.7%	100%	
Neural net-mfcc	9.3%	84.5%	
Tandem-mfcc	7.4%	64.5%	
Tandem-msg+plp	6.4%	47.2%	

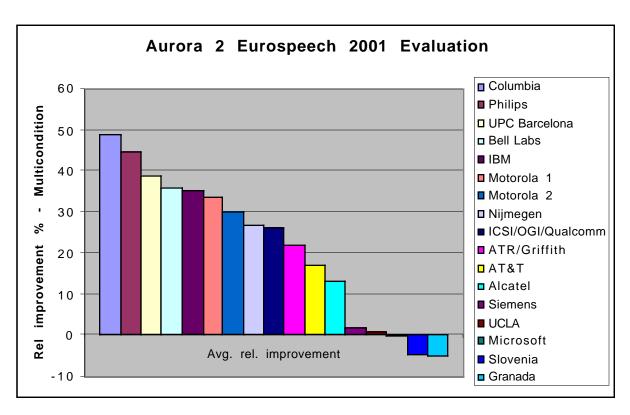
Inside Tandem systems: What's going on?

Visualizations of the net outputs



- Neural net normalizes away noise?
 - ... just a successful way to build a classifier?

Tandem vs. other approaches



- 50% of word errors corrected over baseline
- Beat a 'bells and whistles' system that used many large-vocabulary techniques

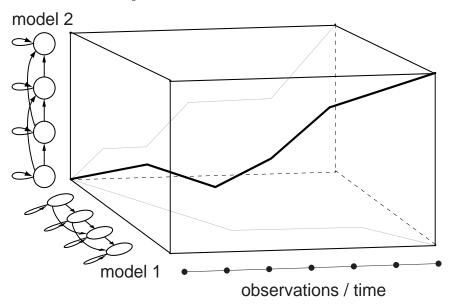
Outline

- 1 Sound, Mixtures & Learning
- 2 Computational Auditory Scene Analysis
- 3 Recognizing Speech in Noise
- 4 Using Models in Parallel
 - HMM decomposition/factoring
 - Speech fragment decoding
- 5 The Listening Machine

Using Models in Parallel: HMM decomposition

(e.g. Varga & Moore 1991, Gales & Young 1996)

 Independent state sequences for 2+ component source models

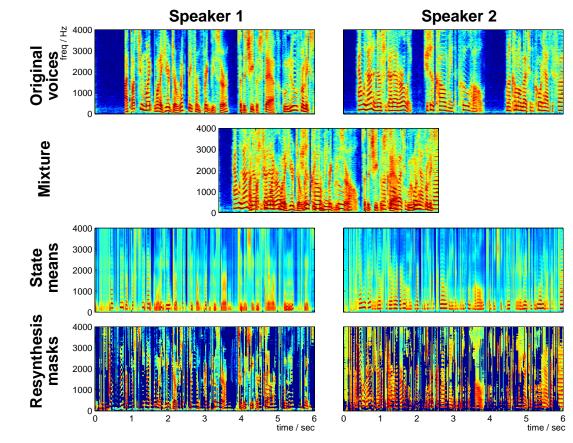


- New combined state space $q' = \{q_1 \ q_2\}$
 - need pdfs for each combination $p(X|q_1,q_2)$

"One microphone source separation"

(Roweis 2000, Manuel Reyes)

State sequences → t-f estimates → mask



- 1000 states/model (\rightarrow 10⁶ transition probs.)
- simplify by modeling subbands (coupled HMM)?

Dan Ellis

Speech Fragment Recognition

(Jon Barker & Martin Cooke, Sheffield)

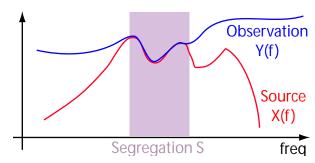
- Signal separation is too hard! Instead:
 - segregate features into partially-observed sources
 - then classify
- Made possible by missing data recognition
 - integrate over uncertainty in observations for optimal posterior distribution
- Goal: Relate clean speech models P(X|M)to speech-plus-noise mixture observations
 - .. and make it tractable

Comparing different segregations

Standard classification chooses between models M to match source features X

$$M^* = \underset{M}{\operatorname{argmax}} P(M|X) = \underset{M}{\operatorname{argmax}} P(X|M) \cdot \frac{P(M)}{P(X)}$$

Mixtures \rightarrow observed features Y, segregation S, all related by P(X|Y,S)



- spectral features allow clean relationship
- Joint classification of model and segregation:

$$P(M, S|Y) = P(M) \int P(X|M) \cdot \frac{P(X|Y, S)}{P(X)} dX \cdot P(S|Y)$$

integral collapses in several cases...

Calculating fragment matches

$$P(M, S|Y) = P(M) \int P(X|M) \cdot \frac{P(X|Y, S)}{P(X)} dX \cdot P(S|Y)$$

- P(X|M) the clean-signal feature model
- P(X|Y,S)/P(X) is X 'visible' given segregation?
- Integration collapses some bands...
- P(S|Y) segregation inferred from observation
 - just assume uniform, find S for most likely M
 - or: use extra information in Y to distinguish S's e.g. harmonicity, onset grouping

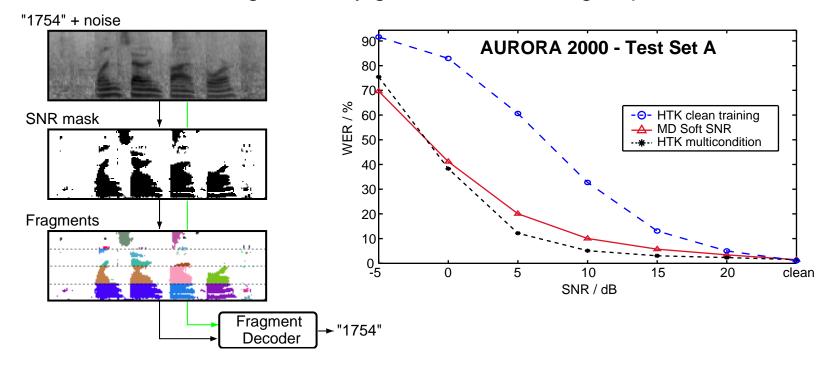
Result:

probabilistically-correct relation between clean-source models P(X|M)and inferred, recognized source + segregation P(M,S|Y)

Dan Ellis

Speech fragment decoder results

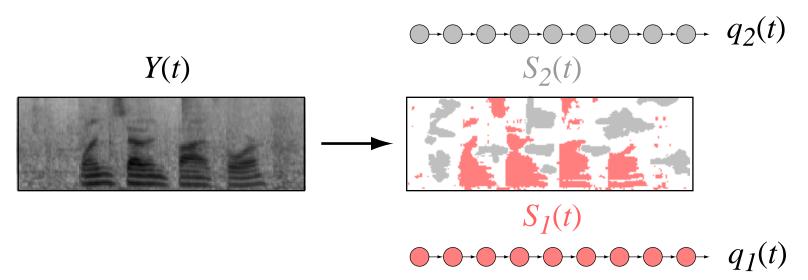
- Simple P(S|Y) model forces contiguous regions to stay together
 - big efficiency gain when searching *S* space



 Clean-models-based recognition rivals trained-in-noise recognition

Multi-source decoding

Search for more than one source



- Mutually-dependent data masks
- Use e.g. CASA features to propose masks
 - locally coherent regions
 - more powerful than Roweis masks
- Huge practical advantage over full search

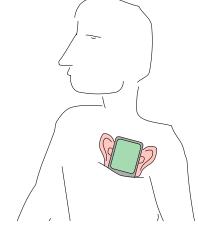
Dan Ellis

Outline

- 1 Sound, Mixtures & Learning
- 2 Computational Auditory Scene Analysis
- 3 Recognizing Speech in Noise
- 4 Using Models in Parallel
- 5 The Listening Machine
 - Everyday sound
 - Alarms
 - Music

The Listening Machine

- **Smart PDA records everything**
- Only useful if we have index, summaries
 - monitor for particular sounds
 - real-time description
- **Scenarios**



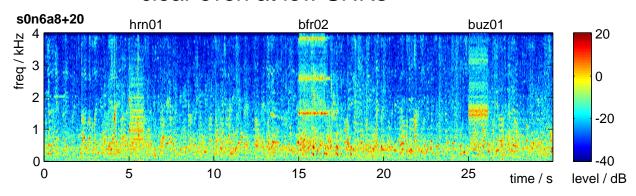
- personal listener → summary of your day
- future prosthetic hearing device
- autonomous robots
- Meeting data, ambulatory audio

Alarm sound detection

(Ellis 2001)

Alarm sounds have particular structure

- people 'know them when they hear them'
- clear even at low SNRs



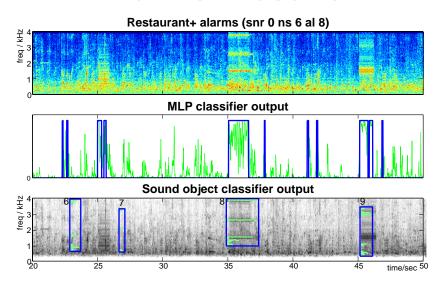
Why investigate alarm sounds?

- they're supposed to be easy
- potential applications...

Contrast two systems:

- standard, global features, P(X|M)
- sinusoidal model, fragments, P(M,S|Y)

Alarms: Results



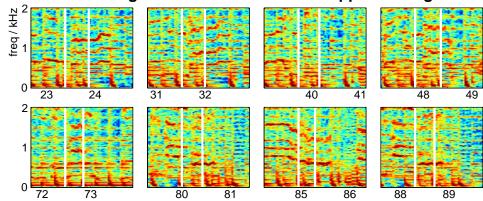
 Both systems commit many insertions at 0dB SNR, but in different circumstances:

Noise	Neural net system		Sinusoid model system			
	Del	Ins	Tot	Del	Ins	Tot
1 (amb)	7 / 25	2	36%	14 / 25	1	60%
2 (bab)	5 / 25	63	272%	15 / 25	2	68%
3 (spe)	2 / 25	68	280%	12 / 25	9	84%
4 (mus)	8 / 25	37	180%	9 / 25	135	576%
Overall	22 / 100	170	192%	50 / 100	147	197%

Music Applications

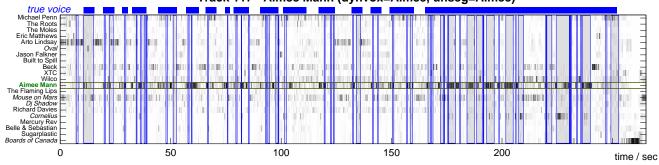
- Music as a complex, information-rich sound
- Applications of separation & recognition:
 - note/chord detection & classification

DYWMB: Alignments to MIDI note 57 mapped to Orig Audio



- singing detection (→ genre identification ...)

Track 117 - Aimee Mann (dynvox=Aimee, unseg=Aimee)



Summary

Sound

- .. contains much, valuable information at many levels
- intelligent systems need to use this information

Mixtures

- .. are an unavoidable complication when using sound
- looking in the right time-frequency place to find points of dominance

Learning

- need to acquire constraints from the environment
- recognition/classification as the real task

References

- A. Bregman. Auditory Scene Analysis, MIT Press, 1990.
- A. Bell and T. Sejnowski. "An information-maximization approach to blind separation and blind deconvolution," *Neural Computation*, 7: 1129-1159, 1995.

http://citeseer.nj.nec.com/bell95informationmaximization.html

A. Berenzweig, D. Ellis, S. Lawrence (2002). "Using Voice Segments to Improve Artist Classification of Music ", Proc. AES-22 Intl. Conf. on Virt., Synth., and Ent. Audio. Espoo, Finland, June 2002.

http://www.ee.columbia.edu/~dpwe/pubs/aes02-aclass.pdf

A. Berenzweig, D. Ellis, S. Lawrence (2002). "Anchor Space for Classification and Similarity Measurement of Music", Proc. ICME-03, Baltimore, July 2003.

http://www.ee.columbia.edu/~dpwe/pubs/icme03-anchor.pdf

- M. Cooke and G. Brown. "Computational auditory scene analysis: Exploiting principles of perceived continuity", *Speech Communication* 13, 391-399, 1993
- D. Ellis. *Prediction-driven computational auditory scene analysis*, Ph.D. dissertation, MIT, 1996. http://www.ee.columbia.edu/~dpwe/pubs/pdcasa.pdf
- D. Ellis. "Detecting Alarm Sounds", Proc. Workshop on Consistent & Reliable Acoustic Cues CRAC-01, Denmark, Sept. 2001.

http://www.ee.columbia.edu/~dpwe/pubs/crac01-alarms.pdf

- M. Gales and S. Young. "Robust continuous speech recognition using parallel model combination", *IEEE Tr. Speech and Audio Proc.*, 4(5):352--359, Sept. 1996. http://citeseer.nj.nec.com/gales96robust.html
- H. Hermansky, D. Ellis and S. Sharma, "Tandem connectionist feature extraction for conventional HMM systems," *Proc. ICASSP*, Istanbul, June 2000.

http://citeseer.nj.nec.com/hermansky00tandem.html

