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Sound organization

 

• Central operation:

 

- continuous sound mixture 

 

→

 

 distinct objects & events

 

• Perceptual impression is very strong

 

- but hard to ‘see’ in signal
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Bregman ’s lake

 

“Imagine two narrow channels dug up from the edge of a 
lake, with handkerchiefs stretched across each one.  
Looking only at the motion of the handkerchiefs, you are 
to answer questions such as: How many boats are there 
on the lake and where are they?”   

 

(after Bregman’90)

 

• Received waveform is a mixture

 

- two sensors, N signals ...

 

• Disentangling mixtures as primary goal

 

- perfect solution is not possible
- need knowledge-based 

 

constraints
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The information in sound

 

• A sense of hearing is evolutionarily useful

 

- gives organisms ‘relevant’ information

 

• Auditory perception is 

 

ecologically

 

 grounded

 

- scene analysis is preconscious (

 

→

 

 illusions)
- special-purpose processing reflects 

‘natural scene’ properties
- subjective 

 

not

 

 canonical (ambiguity)
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Key themes for Lab ROSA

 

http://labrosa.ee.columbia.edu/

 

• Sound organization: construct hierarchy

 

- at an instant (sources)
- along time (segmentation)

 

• Scene analysis

 

- find attributes according to objects
- use attributes to form objects
- ... plus constraints of knowledge

 

• Exploiting large data sets (the ASR lesson)

 

- supervised/labeled: pattern recognition
- unsupervised: structure discovery, clustering

 

• Special cases:

 

- speech recognition
- other source-specific recognizers

 

• ... within a ‘complete explanation ’
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Automatic Speech Recognition (ASR)

 

• Standard speech recognition structure:

• ‘State of the art ’ word-error rates (WERs):

 

- 2% (dictation) - 30% (telephone conversations)

 

• Can use multiple streams...
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The connectionist-HMM hybrid

 

(Morgan & Bourlard, 1995)

 

• Conventional recognizers use 

 

P

 

(

 

X

 

i

 

|

 

S

 

i

 

), 
acoustic 

 

likelihood

 

 model

 

- model distribution with, e.g., Gaussian mixtures

 

• Can replace with 

 

posterior

 

, 

 

P
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):

 

- neural network estimates phone given acoustics
- discriminative

 

• Simpler structure for research
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Tandem speech recognition

 

(with Hermansky, Sharma & Sivadas/OGI, Singh/CMU, ICSI)

 

• Neural net estimates phone posteriors;
but Gaussian mixtures model finer detail

• Combine them!

• Train net, then train GMM on net output

 

- GMM is ignorant of net output ‘meaning’
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Tandem system results

 

• It works very well ( ‘Aurora ’ noisy digits):

 

System-features Avg. WER 20-0 dB Baseline WER ratio

 

HTK-mfcc 13.7% 100%

Neural net-mfcc 9.3% 84.5%

Tandem-mfcc 7.4% 64.5%

 

Tandem-msg+plp 6.4% 47.2%
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Connectionist speaker recognition

 

(with Dominique Genoud)

 

• Use neural networks to model speakers rather 
than phones?

• Specialize a phone classi fier for a particular 
speaker?

• Do both at once for “Twin-output MLP ”:
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Speech/music discrimination

 

(with Gethin Williams)

 

• Neural net is very sensitive to speech:

 

- characteristic jumping between phones
- define statistics to distinguish speech regions

e.g. entropy, ‘dynamism’ (delta-magnitude):

 

• 1.4% classi fication error on 2.5 s segments

 

- use HMM structure for segmentation

 

• Good predictor of ASR success
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Music analysis: Lyrics extraction

 

(with Adam Berenzweig)

 

• Vocal content is highly salient, 
useful for retrieval

• Can we find the singing? 
Use an ASR classi fier:

• Frame error rate ~20% for segmentation based 
on posterior-feature statistics

• Lyric segmentation + transcribed lyrics

 

→

 

 training data for lyrics ASR...
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Music analysis: Structure recovery

 

(with Rob Turetsky)

 

• Structure recovery by similarity matrices
(after Foote)

 

- similarity distance measure?
- segmentation & repetition structure
- interpretation at different scales:

notes, phrases, movements
- incorporating musical knowledge:

‘theme similarity’
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Sound mixtures

• Sound ‘scene ’ is almost always a mixture
- always stuff going on
- sound is ‘transparent’ 

• Need information related to our ‘world model ’
- i.e. separate objects
- a wolf howling in a blizzard is the same as 

a wolf howling in a rainstorm
- whole-signal statistics won’t do this

• ‘Separateness ’ is similar to independence
- objects/sounds that change in isolation
- but: depends on the situation e.g.

passing car vs. mechanic’s diagnosis
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Human  Sound Organization

• “Auditory Scene Analysis ” [Bregman 1990]
- break mixture into small elements (in time-freq)
- elements are grouped in to sources using cues
- sources have aggregate attributes

• Grouping ‘rules ’ (Darwin, Carlyon, ...):
- cues: common onset/offset/modulation, 

harmonicity, spatial location, ...

(from 
Darwin 1996)
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Cues and grouping

• Common attributes and ‘fate ’

- harmonicity, common onset
→ perceived as a single sound source/event

• But: can have con flicting cues

- determine how ∆t and ∆f affect 
• segregation of harmonic
• pitch of complex

time

freq

time

freq
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The effect of context

• Context can create an ‘expectation ’: 
i.e. a bias towards a particular interpretation

• e.g. Bregman ’s “old-plus-new ” principle:
A change in a signal will be interpreted as an 
added source whenever possible

- a different division of the same energy 
depending on what preceded it
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Computational ASA

• Goal: Systems to ‘pick out ’ sounds in a mixture
- ... like people do

• Implement psychoacoustic theory?

- ‘bottom-up’, using common onset & periodicity

• Able to extract voiced speech:
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Adding top-down cues

Perception is not direct
but a search for plausible hypotheses

• Data-driven (bottom-up)...

vs. Prediction-driven (top-down) (PDCASA)

• Motivations
- detect non-tonal events (noise & click elements)
- support ‘restoration illusions’...

→ hooks for high-level knowledge
+  ‘complete explanation’, multiple hypotheses, ...
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PDCASA and complex scenes
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Missing data recognition
(Cooke, Green, Barker... @ Sheffield)

• Energy overlaps in time-freq. hide features
- some observations are effectively missing

• Use missing feature theory...
- integrate over missing data dimensions xm

• Effective in speech recognition
- trick is finding good/bad data mask
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Multi-source decoding
(Jon Barker @ Sheffield)

• Search of sound-fragment interpretations

• CASA for masks/fragments
- larger fragments → quicker search

• Use with nonspeech models?

"1754" + noise

Common Onset/Offset

Multisource
Decoder

Spectro-Temporal Proximity

Mask split into subbands

stationary noise estimate

`Grouping' applied within bands:
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Audio Information Retrieval

• Searching in a database of audio
- speech .. use ASR
- text annotations .. search them
- sound effects library?

• e.g. Muscle Fish “ SoundFisher”  browser
- define multiple ‘perceptual’ feature dimensions
- search by proximity in (weighted) feature space

- features are ‘global’ for each soundfile,
no attempt to separate mixtures 

Segment
feature
analysis

Sound segment
database

Segment
feature
analysis

Seach/
comparison

Results
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CASA for audio retrieval

• When audio material contains mixtures, 
global features are insufficient

• Retrieval based on element/object analysis:

- features are calculated over grouped subsets

Generic
element
analysis

Continuous audio
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Object
formation

(Object
formation)
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Alarm sound detection

• Alarm sounds have particular structure
- people ‘know them when they hear them’

• Isolate alarms in sound mixtures

- representation of energy in time-frequency
- formation of atomic elements
- grouping by common properties (onset &c.)
- classify by attributes...

• Key: recognize despite background
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Future prosthetic listening devices

• CASA to replace lost hearing ability
- sound mixtures are difficult for hearing impaired

• Signal enhancement
- resynthesize a single source without background
- (need very good resynthesis)

• Signal understanding
- monitor for particular sounds (doorbell, knocks)

& translate into alternative mode (vibro alarm)
- real-time textual descriptions

i.e. “automatic subtitles for real life”

[thunder]
S: I THINK THE
WEATHER'S 
CHANGING
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The ‘Machine listener’

• Goal: An auditory system for machines
- use same environmental information as people

• Aspects:
- recognize spoken commands (but not others)
- track ‘acoustic channel’ quality (for responses)
- categorize environment (conversation, crowd...)

• Scenarios

- personal listener → summary of your day
- autonomous robots: need awareness



Lab
ROSA

ROSAtalk @ NEC - Dan Ellis 2001-08-17 - 31
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Summary:
Applications for sound organization

What do people do with their ears?

• Human-computer interface
- .. includes knowing when (& why) you’ve failed

• Robots
- intelligence requires perceptual awareness
- Sony’s AIBO: dog-hearing

• Archive indexing & retrieval
- pure audio archives
- true multimedia content analysis

• Content ‘understanding’
- intelligent classification & summarization

• Autonomous monitoring

• ‘Structure discovery’ algorithms



Lab
ROSA

ROSAtalk @ NEC - Dan Ellis 2001-08-17 - 33

LabROSA Summary
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ROSA

•  Broadcast
•  Movies
•  Lectures

•  Meetings
•  Personal recordings
•  Location monitoring

•  Speech recognition
•  Speech characterization
•  Nonspeech recognition

• Object-based structure discovery & learning

•  Scene analysis
•  Audio-visual integration
•  Music analysis

•  Structuring
•  Search
•  Summarization
•  Awareness
•  Understanding
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Extra slides...
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Positioning sound organization

• Draws on many techniques

• Abuts/overlaps various areas

Sound
organization
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processing

Pattern
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Machine
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& physiologySignal

processing

Image/video
analysis

Comp. Aud.
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Tandem recognition: Relative contributions

• Approx relative impact on baseline WER ratio
for different component:
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Inside Tandem systems:
What’s going on?

• Visualizations of the net outputs

• Neural net normalizes away noise
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Acoustic Change Detection (ACD)
(with Javier Ferreiros, UPM)

• Find optimal segmentation points via 
Bayesian Information Criterion (BIC)

• Cluster segments to find underlying ‘sources’

• Repeat segmentation incorporating cluster 
assignments

Feature 
Extraction 1 

Broad Class 
Recognizer 

Hypothesis 
Generator 

Feature 
Extraction 2 ACD

CLUSTERING
 

Speech
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The Meeting Recorder project
(with ICSI, UW, SRI, IBM)

• Microphones in conventional meetings
- for summarization/retrieval/behavior analysis
- informal, overlapped speech

• Data collection (ICSI, UW, ...):

- 100 hours collected, ongoing transcription
- headsets + tabletop + ‘PDA’



Lab
ROSA

ROSAtalk @ NEC - Dan Ellis 2001-08-17 - 40

Crosstalk cancellation

• Baseline speaker activity detection is hard:

• Noisy crosstalk model: 

• Estimate subband CAa from A’s peak energy

- ... including pure delay (10 ms frames)
- ... then linear inversion
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Participant motion detection

• Cross-correlation gives speaker-mic coupling:

• Changes in coupling impulse response show 
changes in path/orientation

• Comparison between different channels
→ distinguish speaker and listener motion
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PDA-based speaker change detection

• Goal: small conference-tabletop device

• Speaker turns from PDA mock-up signals?

• SCD algo on  spectral + interaural features 
- average spectral + per-channel ITD, ∆φ

pda.aif: excerpt with 512-pt xcorr, 80% max thresh
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Computational ASA

• Goal: Automatic sound organization ;
Systems to ‘pick out’ sounds in a mixture
- ... like people do

• E.g. voice against a noisy background
- to improve speech recognition

• Approach:
- psychoacoustics describes grouping ‘rules’
- ... just implement them?

CASA
Object 1 description
Object 2 description
Object 3 description
...
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CASA front-end processing

• Correlogram:
Loosely based on known/possible physiology

- linear filterbank cochlear approximation
- static nonlinearity
- zero-delay slice is like spectrogram
- periodicity from delay-and-multiply detectors

Cochlea
filterbank

sound

envelope
follower

short-time
autocorrelation

delay lin
e

fr
eq

ue
nc

y 
ch

an
ne

ls

Correlogram
slice

freq

lag

time



Lab
ROSA

ROSAtalk @ NEC - Dan Ellis 2001-08-17 - 45

Problems with ‘bottom-up’ CASA

• Circumscribing time-frequency elements
- need to have ‘regions’, but hard to find

• Periodicity is the primary cue
- how to handle aperiodic energy?

• Resynthesis via masked fi ltering
- cannot separate within a single t-f element

• Bottom-up leaves no ambiguity or context
- how to model illusions?

time

freq
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Generic sound elements for PDCASA

• Goal is a representational space that
- covers real-world perceptual sounds
- minimal parameterization (sparseness)
- separate attributes in separate parameters

• Object hierarchies built on top...
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PDCASA for old-plus-new

• Incremental analysis
t1 t2 t3

Input signal

Time t1:
initial element 
created

Time t2:
Additional 
element required

Time t3:
Second element 
finished


