Recognition & Organization of Speech & Audio

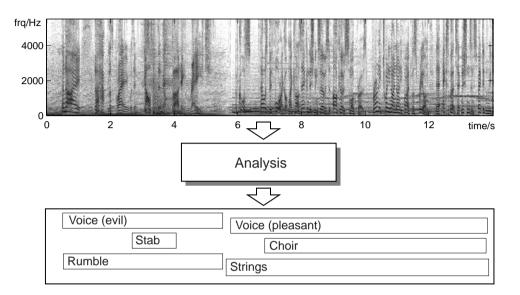
Dan Ellis Electrical Engineering, Columbia University <dpwe@ee.columbia.edu> http://www.ee.columbia.edu/~dpwe/

Outline

1 Introducing LabROSA

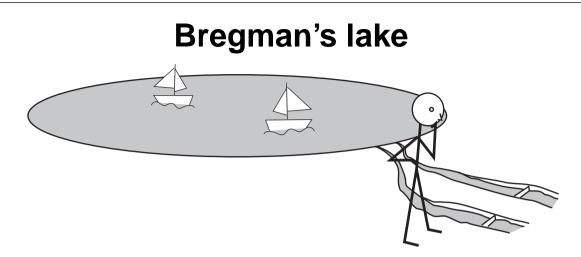
- 2 Speech recognition & processing
- **3** Auditory Scene Analysis
- 4 Projects & applications
- 5 Summary

Sound organization



• Central operation:

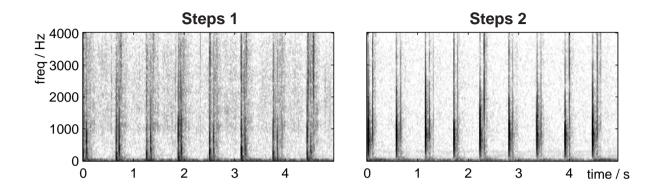
- continuous sound mixture \rightarrow distinct objects & events
- Perceptual impression is very strong
 - but hard to 'see' in signal



"Imagine two narrow channels dug up from the edge of a lake, with handkerchiefs stretched across each one. Looking only at the motion of the handkerchiefs, you are to answer questions such as: How many boats are there on the lake and where are they?" (after Bregman'90)

- Received waveform is a mixture
 - two sensors, N signals ...
- Disentangling mixtures as primary goal
 - perfect solution is not possible
 - need knowledge-based constraints

The information in sound



- A sense of hearing is evolutionarily useful
 - gives organisms 'relevant' information

• Auditory perception is *ecologically* grounded

- scene analysis is preconscious (\rightarrow illusions)
- special-purpose processing reflects 'natural scene' properties
- subjective not canonical (ambiguity)

Key themes for LabROSA

http://labrosa.ee.columbia.edu/

- Sound organization: construct hierarchy
 - at an instant (sources)
 - along time (segmentation)
- Scene analysis
 - find attributes according to objects
 - use attributes to form objects
 - ... plus constraints of knowledge
- Exploiting large data sets (the ASR lesson)
 - supervised/labeled: pattern recognition
 - unsupervised: structure discovery, clustering
- Special cases:
 - speech recognition
 - other source-specific recognizers

... within a 'complete explanation'

Outline

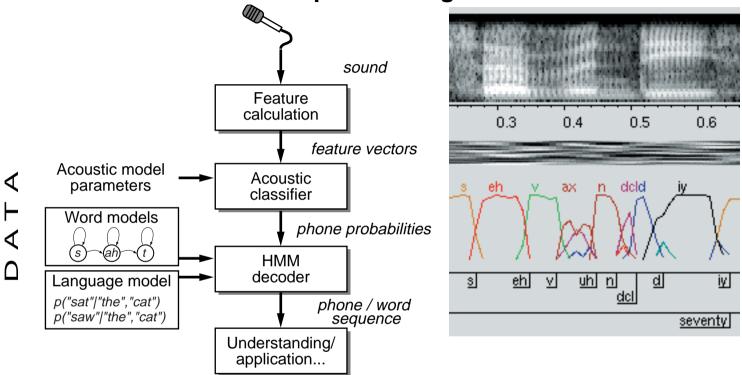
1 Introducing LabROSA

2 Speech recognition & processing

- Connectionist and tandem recognition
- Speech and speaker detection
- Musical information extraction
- **3** Auditory Scene Analysis
 - 4 Projects & applications
- 5 Summary

Automatic Speech Recognition (ASR)

Standard speech recognition structure:

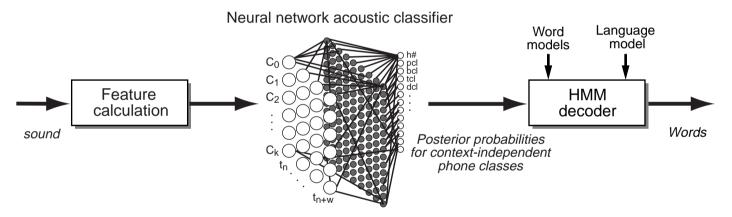


- 'State of the art' word-error rates (WERs):
 - 2% (dictation) 30% (telephone conversations)
- Can use multiple streams...

The connectionist-HMM hybrid

(Morgan & Bourlard, 1995)

- Conventional recognizers use P(X_i|S_i), acoustic likelihood model
 - model distribution with, e.g., Gaussian mixtures
- Can replace with *posterior*, $P(S_i|X_i)$:

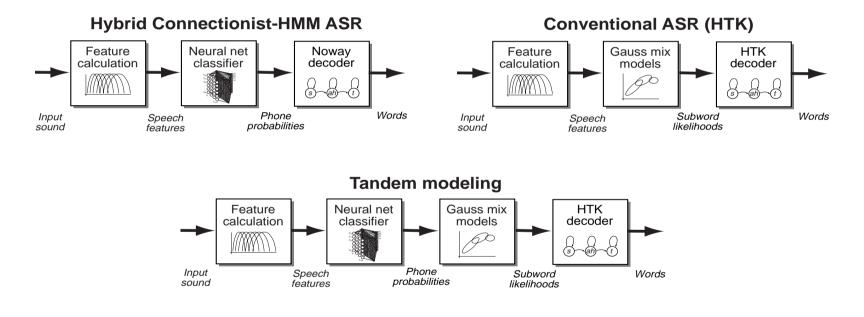


- neural network estimates phone given acoustics
- discriminative
- Simpler structure for research

Tandem speech recognition

(with Hermansky, Sharma & Sivadas/OGI, Singh/CMU, ICSI)

- Neural net estimates phone posteriors; but Gaussian mixtures model finer detail
- Combine them!



- Train net, then train GMM on net output
 - GMM is ignorant of net output 'meaning'

Tandem system results

• It works very well ('Aurora' noisy digits):

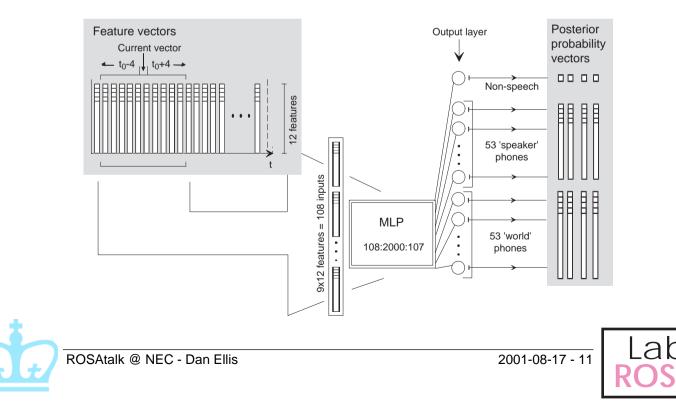
WER as a function of SNR for various Aurora99 systems 100 Average WER ratio to baseline: 50 HTK GMM: 100% Hybrid: 84.6% WER / % (log scale) Tandem: 64.5% 20 Tandem + PC: 47.2% 10 5 ----- HTK GMM baseline ---- Hybrid connectionist 2 - Tandem Tandem + PC - - -1 -5 0 5 10 15 20 clean SNR / dB (averaged over 4 noises)

System-features	Avg. WER 20-0 dB	Baseline WER ratio
HTK-mfcc	13.7%	100%
Neural net-mfcc	9.3%	84.5%
Tandem-mfcc	7.4%	64.5%
Tandem-msg+plp	6.4%	47.2%

Connectionist speaker recognition

(with Dominique Genoud)

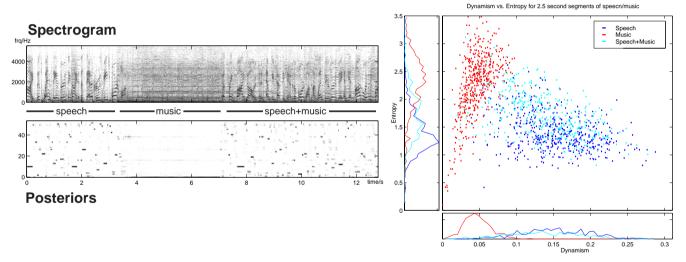
- Use neural networks to model speakers rather than phones?
- Specialize a phone classifier for a particular speaker?
- Do both at once for "Twin-output MLP":



Speech/music discrimination

(with Gethin Williams)

- Neural net is very sensitive to speech:
 - characteristic jumping between phones
 - define statistics to distinguish speech regions e.g. entropy, 'dynamism' (delta-magnitude):

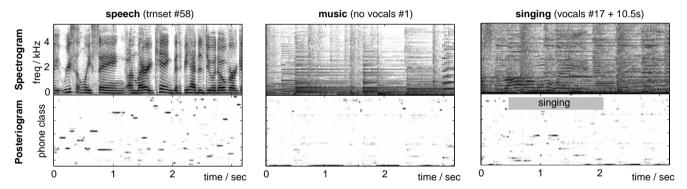


- 1.4% classification error on 2.5 s segments
 - use HMM structure for segmentation
- Good predictor of ASR success

Music analysis: Lyrics extraction

(with Adam Berenzweig)

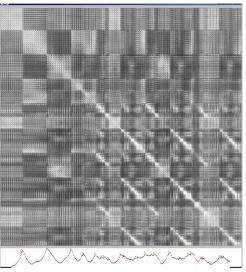
- Vocal content is highly salient, useful for retrieval
- Can we find the singing? Use an ASR classifier:



- Frame error rate ~20% for segmentation based on posterior-feature statistics
- Lyric segmentation + transcribed lyrics → training data for lyrics ASR...

Music analysis: Structure recovery (with Rob Turetsky)

• Structure recovery by similarity matrices (after Foote)



- similarity distance measure?
- segmentation & repetition structure
- interpretation at different scales: notes, phrases, movements
- incorporating musical knowledge:
 'theme similarity'

Outline

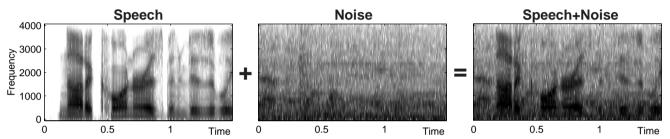
- 1 Introducing LabROSA
- 2 Speech recognition & processing

3 Auditory Scene Analysis

- Perception of sound mixtures
- Illusions
- Computational modeling
- Projects & applications

Sound mixtures

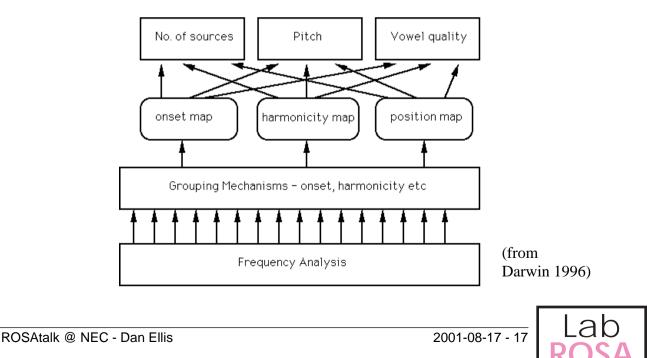
- Sound 'scene' is almost always a mixture
 - always stuff going on
 - sound is 'transparent'



- Need information related to our 'world model'
 - i.e. separate objects
 - a wolf howling in a blizzard is the same as a wolf howling in a rainstorm
 - whole-signal statistics won't do this
- 'Separateness' is similar to independence
 - objects/sounds that change in isolation
 - but: depends on the situation e.g. passing car vs. mechanic's diagnosis

Human Sound Organization

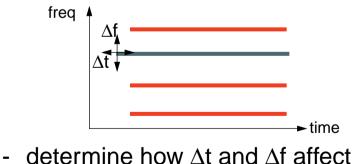
- "Auditory Scene Analysis" [Bregman 1990]
 - break mixture into small elements (in time-freq)
 - elements are *grouped* in to sources using *cues*
 - sources have aggregate attributes
- Grouping 'rules' (Darwin, Carlyon, ...):
 - cues: common onset/offset/modulation, harmonicity, spatial location, ...



Cues and grouping

Common attributes and 'fate'

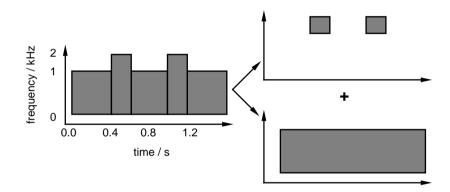
- harmonicity, common onset
 - \rightarrow perceived as a single sound source/event
- But: can have conflicting cues



- segregation of harmonic
- pitch of complex

The effect of context

- Context can create an 'expectation': i.e. a bias towards a particular interpretation
- e.g. Bregman's "old-plus-new" principle:
 - A change in a signal will be interpreted as an *added* source whenever possible

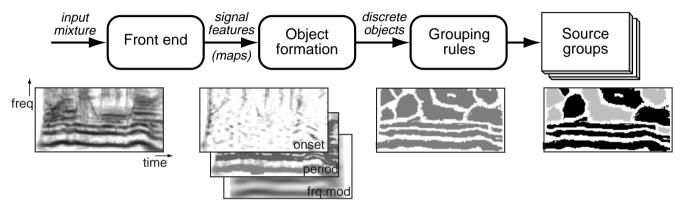


- a different division of the same energy depending on what preceded it

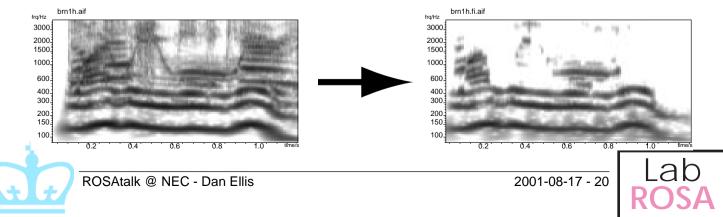
Computational ASA

- Goal: Systems to 'pick out' sounds in a mixture
 - ... like people do

Implement psychoacoustic theory?



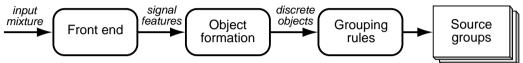
- 'bottom-up', using common onset & periodicity
- Able to extract voiced speech:



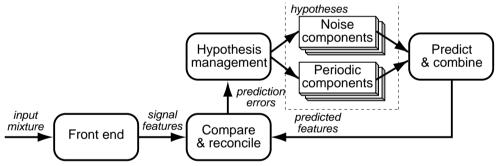
Adding top-down cues

Perception is not *direct* but a *search* for *plausible hypotheses*

• Data-driven (bottom-up)...



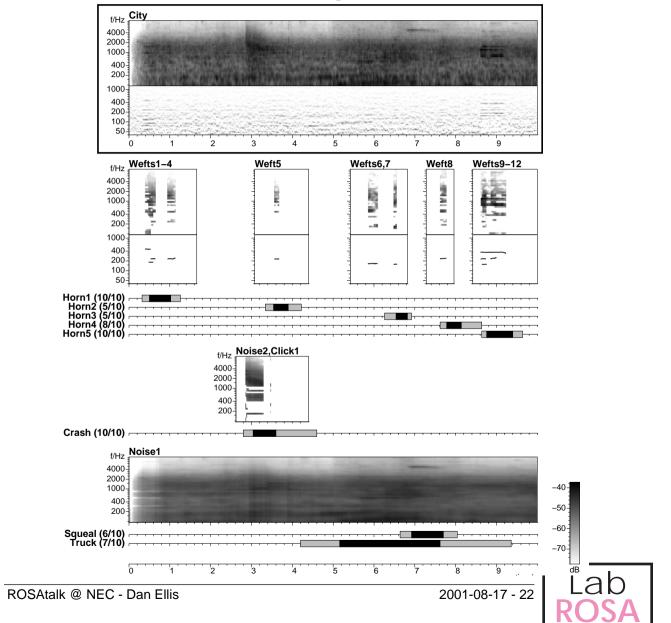
vs. Prediction-driven (top-down) (PDCASA)



Motivations

- detect non-tonal events (noise & click elements)
- support 'restoration illusions'...
 - \rightarrow hooks for high-level knowledge
- + 'complete explanation', multiple hypotheses, ...

PDCASA and complex scenes



Outline

- 1 Introducing LabROSA
- 2 Speech recognition & processing
- **3** Auditory Scene Analysis

4 Projects & applications

- Missing data recognition
- Hearing prostheses
- The machine listener

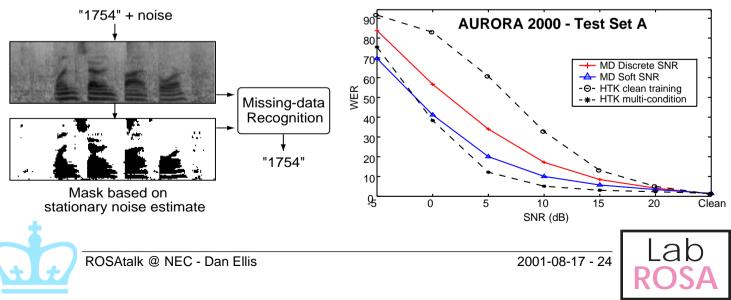
Missing data recognition

(Cooke, Green, Barker... @ Sheffield)

- Energy overlaps in time-freq. hide features
 - some observations are effectively missing
- Use missing feature theory...
 - integrate over missing data dimensions x_m $p(x|q) = \int p(x_g|x_m, q) p(x_m|q) dx_m$

Effective in speech recognition

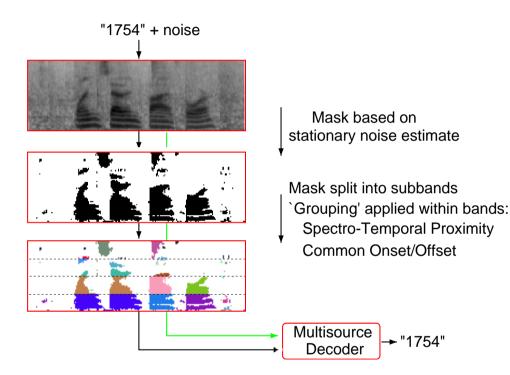
- trick is finding good/bad data mask



Multi-source decoding

(Jon Barker @ Sheffield)

• Search of sound-fragment interpretations

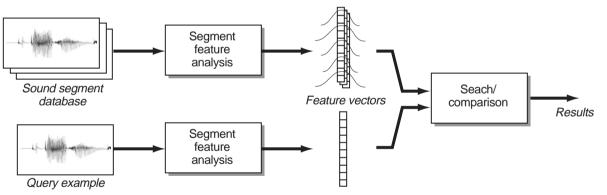


- CASA for masks/fragments
 - larger fragments \rightarrow quicker search

Use with nonspeech models?

Audio Information Retrieval

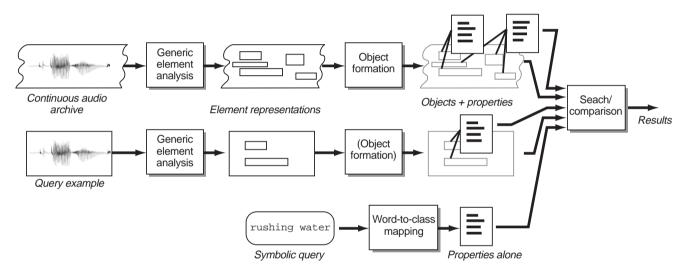
- Searching in a database of audio
 - speech .. use ASR
 - text annotations .. search them
 - sound effects library?
- e.g. Muscle Fish "SoundFisher" browser
 - define multiple 'perceptual' feature dimensions
 - search by proximity in (weighted) feature space



 features are 'global' for each soundfile, no attempt to separate mixtures

CASA for audio retrieval

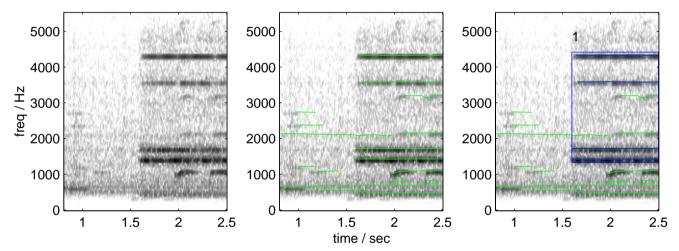
- When audio material contains mixtures, global features are insufficient
- Retrieval based on element/object analysis:



- features are calculated over grouped subsets

Alarm sound detection

- Alarm sounds have particular structure
 - people 'know them when they hear them'
- Isolate alarms in sound mixtures



- representation of energy in time-frequency
- formation of atomic elements
- grouping by common properties (onset &c.)
- classify by attributes...

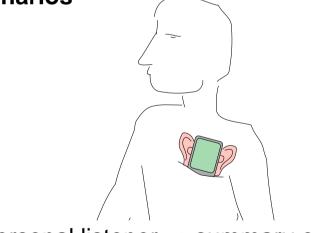
Key: recognize despite background

Future prosthetic listening devices

- CASA to replace lost hearing ability
 - sound mixtures are difficult for hearing impaired
- Signal enhancement
 - resynthesize a single source without background
 - (need very good resynthesis)
- Signal understanding
 - monitor for particular sounds (doorbell, knocks)
 & translate into alternative mode (vibro alarm)
 - real-time textual descriptions
 - i.e. "automatic subtitles for real life"

The 'Machine listener'

- Goal: An auditory system for machines
 - use same environmental information as people
- Aspects:
 - recognize spoken commands (but not others)
 - track 'acoustic channel' quality (for responses)
 - categorize environment (conversation, crowd...)
- Scenarios



- personal listener \rightarrow summary of your day
- autonomous robots: need awareness

Outline

- 1 Introducing LabROSA
- **2** Tandem modeling: Neural net features
- **3** Meeting recorder data analysis
- **4** Computational Auditory Scene Analysis
- 5 Summary

Summary: Applications for sound organization

What do people do with their ears?

Human-computer interface

- .. includes knowing when (& why) you've failed
- Robots
 - intelligence requires perceptual awareness
 - Sony's AIBO: dog-hearing
- Archive indexing & retrieval
 - pure audio archives
 - true multimedia content analysis
- Content 'understanding'
 - intelligent classification & summarization
- Autonomous monitoring
- Structure discovery' algorithms

LabROSA Summary

- Broadcast
- **Movies**
- Lectures

- Meetings
- Personal recordings
- Location monitoring

ROSA

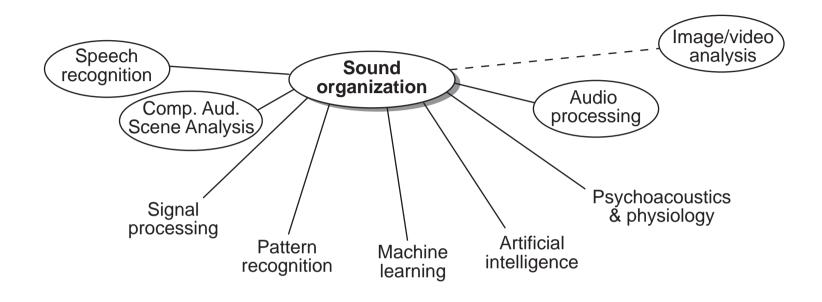
- Object-based structure discovery & learning
- Speech recognition
- Nonspeech recognition
- Scene analysis
- Speech characterization Audio-visual integration
 - Music analysis

APPLICATIONS

- Structuring
- Search
- Summarization
- Awareness
- Understanding

Extra slides...

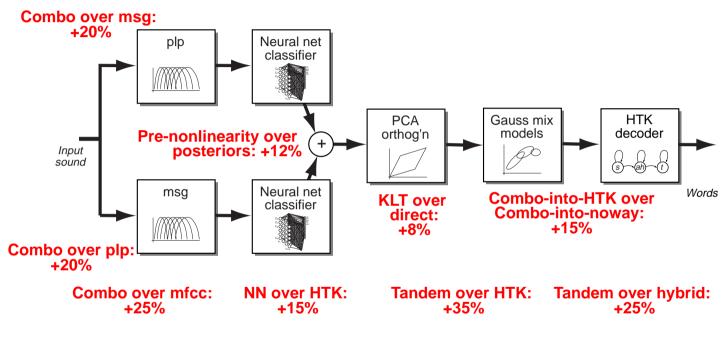
Positioning sound organization



- Draws on many techniques
- Abuts/overlaps various areas

Tandem recognition: Relative contributions

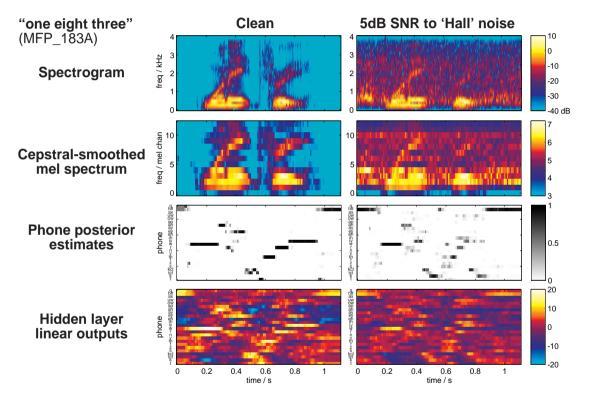
• Approx relative impact on baseline WER ratio for different component:



Tandem combo over HTK mfcc baseline: +53%

Inside Tandem systems: What's going on?

• Visualizations of the net outputs

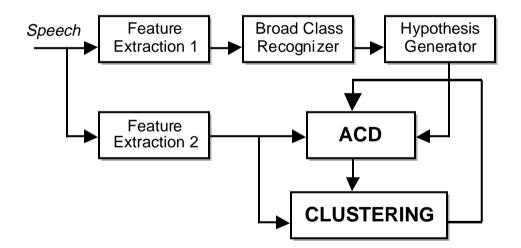


Neural net normalizes away noise

Acoustic Change Detection (ACD)

(with Javier Ferreiros, UPM)

- Find optimal segmentation points via Bayesian Information Criterion (BIC)
- Cluster segments to find underlying 'sources'
- Repeat segmentation incorporating cluster assignments



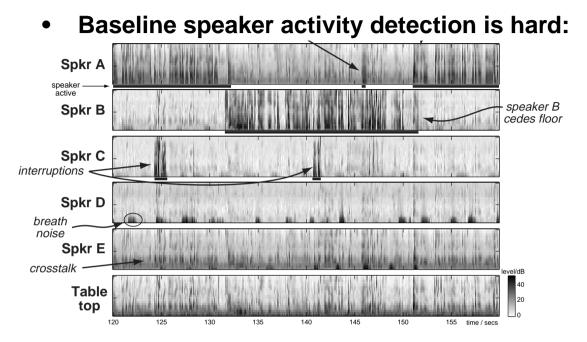
The Meeting Recorder project

(with ICSI, UW, SRI, IBM)

- Microphones in conventional meetings
 - for summarization/retrieval/behavior analysis
 - informal, overlapped speech
- Data collection (ICSI, UW, ...):

- 100 hours collected, ongoing transcription
- headsets + tabletop + 'PDA'

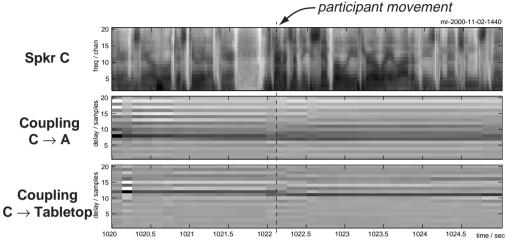
Crosstalk cancellation



- Noisy crosstalk model: $m = C \cdot s + n$
- Estimate subband C_{Aa} from A's peak energy
 - ... including pure delay (10 ms frames)
 - ... then linear inversion

Participant motion detection

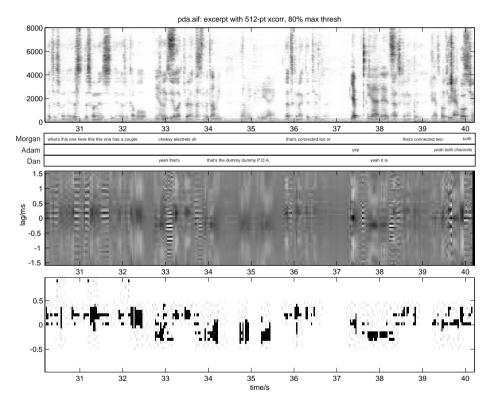
Cross-correlation gives speaker-mic coupling:



- Changes in coupling impulse response show changes in path/orientation
- Comparison between different channels
 distinguish *speaker* and *listener* motion

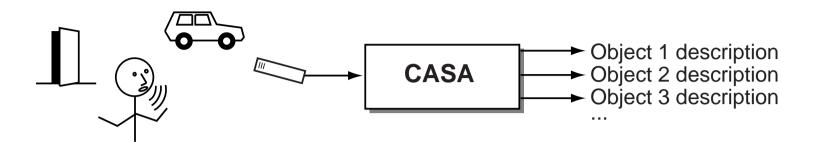
PDA-based speaker change detection

- Goal: small conference-tabletop device
- Speaker turns from PDA mock-up signals?



- SCD algo on spectral + interaural features
 - average spectral + per-channel ITD, $\Delta \phi$

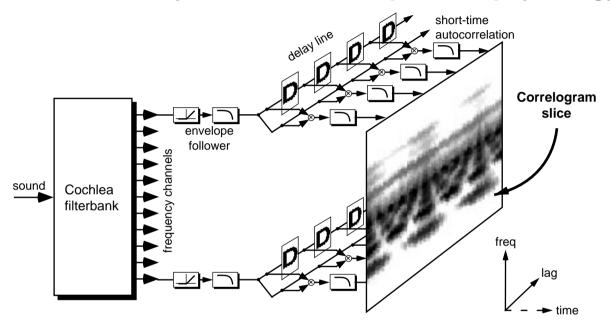
Computational ASA



- Goal: Automatic sound organization ; Systems to 'pick out' sounds in a mixture
 - ... like people do
- E.g. voice against a noisy background
 - to improve speech recognition
- Approach:
 - psychoacoustics describes grouping 'rules'
 - ... just implement them?

CASA front-end processing

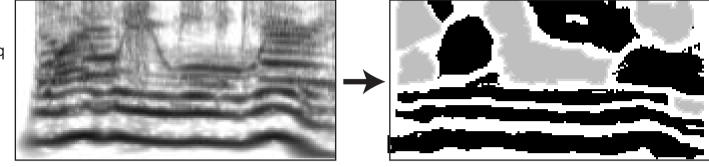
 Correlogram: Loosely based on known/possible physiology



- linear filterbank cochlear approximation
- static nonlinearity
- zero-delay slice is like spectrogram
- periodicity from delay-and-multiply detectors

Problems with 'bottom-up' CASA

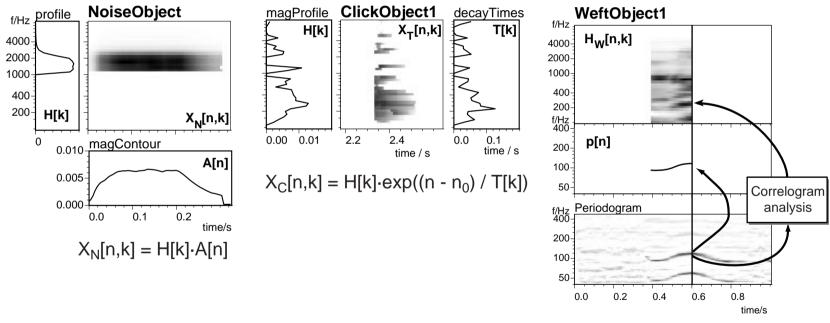
freq



- Circumscribing time-frequency elements
 - need to have 'regions', but hard to find
- Periodicity is the primary cue
 - how to handle aperiodic energy?
- Resynthesis via masked filtering
 - cannot separate within a single t-f element
- Bottom-up leaves no ambiguity or context
 - how to model illusions?

Generic sound elements for PDCASA

- Goal is a representational space that
 - covers real-world perceptual sounds
 - minimal parameterization (sparseness)
 - separate attributes in separate parameters



 $X_W[n,k] = H_W[n,k] \cdot P[n,k]$

Object hierarchies built on top...

PDCASA for old-plus-new

• Incremental analysis

