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1.  Web Video Analysis

•  Web video
Huge volume
Poor labels
Low quality

• The goal:
Automatic, efficient, human-like labeling
- into categories
- by events/objects
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Conventional Approach: 
Global Features

• Train classifiers for predefined categories
based on statistics of whole clip

no object-level description
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[Chang et al. MIR 2007]
[Cristani et.al., TMM 2007]
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Novel Approach:
Audio-Visual Atoms

• Decompose aud/vid into object-like atoms
statistical models of their combinations
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Challenges in Unconstrained Video

• Poor quality
focus
lighting
camera motion
occlusions
ambient noise
handling noise

• Poor A-V correlation
sounds from unobserved objects
sound-producing motions are slight
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Visual Atom Formation

• Point tracking
sift points
link successive
frames

• + Region 
Segmentation
color / texture
define regions

• Link shorter tracks across time
[Jiang et.al., MM 2009]

…

…

Point Tracking 
for Temporal Evolution 

Image Segmentation
for Spatial Localization

Region Tracking
by Point Tracking
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Visual Atom Examples

• A few examples out of 100+ for “wedding”
build codebook based on appearance, shape
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Audio Atom Formation
• Extract & describe Transients

for maximum robustness against noise

• Multiscale analysis to find energy “bursts”
extract 250 ms mel-spectrum window
describe with PCA
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Audio Atom Results

• K-means clustering 
to form codewords
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Example patches 
in each cluster

• Better noise resistance
than MFCCs
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Joint Audio-Visual Atoms
• Consider all possible A-V combinations
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Concept Codebook Learning
• by Multiple-Instance Learning (MIL)

only have clip-level labels
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optimal codeword
far from all negative atoms, close to at least 
one positive atom in positive clips

positive (+)
“Wedding” Clip

…a-v atom a-v atom

negative (-)
Non-“Wedding” Clip

…a-v atom a-v atom

all negative atoms

at least one
positive atom

Many codewords form a codebook

[Maron et al., 
NIPS, 1998]
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Evaluation on Consumer Video

• Kodak consumer video benchmark set
1358 videos (813 training)
25 labels
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[Loui et al. MIR 2007]

ski dancing parade animal playground

wedding sports birthday beach show
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Example A-V Codewords
• “Wedding” class
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Example A-V Codewords
• “Parade” class
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Example A-V Codewords
• “Beach” class
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Consumer Video Evaluation

• A-V atoms vs. Static regions
Average Precision on test set
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Random guess
Static visual region with MIL
A-V atom with MIL (spatial-temporal)
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Consumer Video Evaluation
• Audio / Video / both

audio useful for many classes
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Audio only
Visual only
Visual + Audio

?
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2.  Labeled Data Gathering
• Learning codebooks requires labeled data

novel concept → need new labels
more labels → better performance

• Amazon “Mechanical Turk”

18
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MTurk Results
• Data: YouTube raw camera uploads

based on keyword search for 20 categories

• MTurk Human Intelligence Tasks (HITs)
paid $0.02 per 10s clip (~$7/hr)
4 labelers/clip, finished 9,641 videos in 2 weeks

19

Playground,  Biking Non-music Performance, Ice Skating
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3.  Scene / Object Context
• How to identify events in video?

not objects, not locations
e.g. “people kissing”

• Traditional approach:
get low level features 
for large training set
statistical classifier

• Our approach
use specialized mid-level
detectors (faces, cars)
learn context, relationships
e.g. “kissing” = 
2 faces moving together

20
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Action-Scene-Object
• Identify relevant objects, scenes from 

a few training examples (~ 10)
• Learn relationships for action

accuracy much better than raw classifier

21
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Fig. 2. An overview of our context-based action retrieval framework. Given a few example video clips of an action (standing up), we first automatically mine
a number of pseudo-negative samples. We then extract object and scene contexts and predict their relationships to the action. The learned action-scene-object
relationship is finally utilized to incorporate multiple contextual cues for recognizing similar actions.

script mining method in [3] to collect labeled samples, as it
is particularly designed for movies and may not be applied
for other types of action videos. While in the experiments the
Hollywood2 dataset is adopted for the ease of performance
evaluation, we do not want to limit our approach to any
particular type of data.

B. Obtaining Action Context
1) Scene Recognition: Background scene setting is an

important source of context for understanding human actions.
We adopt ten scene classes defined in [5] (see Fig. 1-Left for
class names), and the scene models are learned using one-
against-all strategy by Support Vector Machines (SVM). We
use the popular χ2 Gaussian kernel. The effectiveness of this
kernel has been validated in many visual recognition tasks.
To combine the two bag-of-features representations based on
SIFT and HoG-HoF, we train separate classifiers and simply
average their probability predictions. From our evaluation, our
scene models perform very similar to that in [5].

2) Object-level Action Atoms: Besides the background
scene, another useful contextual cue is the types of objects
and their interactions in action videos. We therefore employ
a state-of-the-art generic object detector [37], with models
trained for locating person, car, and chair. Since our aim is to
learn human actions, person is obviously the most important
object of interest, while other objects such as car and chair
are helpful for identifying actions involving object interactions
(e.g., person getting out of car and standing up). Object
detectors other than the three can be easily deployed in our
framework without any significant modification.

The output of the detectors is a set of object bounding
boxes over static video frames. Since temporal information
is not considered during detection, the results are not always
consistent across nearby frames – there are many false alarms
and miss-detections. To alleviate the effect of this issue, we
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Fig. 3. Object-level action atoms. The first five indicate object presence
and/or count, and the rest describes object interactions.

track the detected objects based on their spatial locations
and bounding box sizes (bounding box overlap must exceed
40%), and discard the isolated detections without any tracked
association within a temporal window. The window size is
empirically set as 15 frames (0.5 seconds).

Based on the detection, here we define ten object-level
action atoms, including single object, multiple objects, as well
as object interactions (with varying spatial distances along
time). Fig. 3 gives an exemplar for each of the atoms. We
expect that knowing the presence of these atoms, though noisy,
will be helpful for recognizing human actions (e.g., person-
person-closer for action kissing). To characterize the object
interactions, we compute average spatial distance between
different types of detected objects (or among all detected
people for person-person-closer). The average distance is
compared to that in the next successive frame in order to
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4.  Future Work
• Existing joint Audio-Visual atoms are based 

on simple co-occurrence
no temporal structure

• Synchrony?
too hard to detect in 
web video

• Causality?
e.g. simple ordering
“Causal Audio-Video Atoms”
CAVAs

22!

 
Figure 3: Generating Causal Audio-Visual Atom (CAVA) 
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Summary

• Web video analysis
desperate need for automatic analysis
must be in terms of objects, scenes, actions

• Joint Audio-Visual Atoms
object-related codebooks for audio, video
MIL of all possible combinations to find cues

• Labeled Data
Mechanical Turk quickly labels web video examples

• Context-Based Action Detection
uses mature existing object and scene detectors

• Better “Causal Audio-Visual Atoms”
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