Joint Audio-Visual Signatures for Web Video Analysis

Dan Ellis & Shih-Fu Chang

Wei Jiang, Courtenay Cotton, Yu-Gang Jiang, Xiaohong Zeng

Electrical Engineering, Columbia University, NY USA dpwe@ee.columbia.edu http://labrosa.ee.columbia.edu/

Web Video Analysis
 Labeled Data Gathering
 Scene / Object Context
 Future Work

I. Web Video Analysis

Web video
 Huge volume
 Poor labels
 Low quality

• The goal:

• Automatic, efficient, human-like labeling

- into categories
- by events/objects

Conventional Approach: Global Features

 Train classifiers for predefined categories based on statistics of whole clip

• no object-level description

[Chang et al. MIR 2007] [Cristani et.al., TMM 2007]

Novel Approach: Audio-Visual Atoms

Decompose aud/vid into object-like atoms statistical models of their combinations

2010-09-14 4/23

Challenges in Unconstrained Video

- Poor quality
 - focus
 - lighting
 - camera motion
 - occlusions
 - ambient noise
 - handling noise

Poor A-V correlation

sounds from unobserved objectssound-producing motions are slight

Visual Atom Formation

Point tracking
 o sift points

link successive frames

+ Region
 Segmentation
 color / texture
 define regions

Point Tracking for Temporal Evolution

Image Segmentation for Spatial Localization

Link shorter tracks across time

[Jiang et.al., MM 2009]

Visual Atom Examples

A few examples out of 100+ for "wedding"
build codebook based on appearance, shape

Audio Atom Formation

• Extract & describe Transients

• for maximum robustness against noise

- Multiscale analysis to find energy "bursts"
 - extract 250 ms mel-spectrum window
 - describe with PCA

Audio Atom Results

 K-means clustering to form codewords Better noise resistance than MFCCs

Joint Audio-Visual Atoms

• Consider all possible A-V combinations

Evaluation on Consumer Video

- Kodak consumer video benchmark set
 - 1358 videos (813 training)
 - 25 labels

[Loui et al. MIR 2007]

Example A-V Codewords

• "Wedding" class

Example A-V Codewords

"Parade" class

road + parade sound

marching people parade sound

Example A-V Codewords

"Beach" class

sand +beach sound

water + beach sound

beach chair +beach sound

+

beach

sound

Consumer Video Evaluation

A-V atoms vs. Static regions
 Average Precision on test set

Consumer Video Evaluation

Audio / Video / both audio useful for many classes

2. Labeled Data Gathering

• Learning codebooks requires labeled data

• novel concept \rightarrow need new labels

• more labels \rightarrow better performance

• Amazon "Mechanical Turk"

Mark all the categories that appear in any part of the video.

Description:

- Watch the entire video as more categories may appear over time.
- Mark all the categories that appear in any part of the video.
- Make sure the audio is on.
- If no matching category is found, mark the box in front of "None of the categories matches".
- For categories that appears to be relevant but you're not completely sure, please still mark it.
- Please move over or click on the category name for detailed description.

Replay Continue Playing
Original URL: http://www.youtube.com/watch?v=u_2dqWBd1L0

Sport	Animal	Celebration	Others
🔳 <u>Basketball</u>	🔳 <u>Cat</u>	Graduation	Music Performance
🔳 <u>Baseball</u>	🗖 <u>Dog</u>	🔲 <u>Birthday</u>	Non-music Performance
Soccer	🔲 <u>Bird</u>	Wedding Reception	🗖 <u>Parade</u>
🔲 <u>Ice Skate</u>		Wedding Ceremony	🔲 <u>Beach</u>
🗖 <u>Ski</u>		Wedding Dance	Playground
Swim	None of the categories matches.		
🗖 <u>Biking</u>	🗖 I don't see any video playing.		
Current Times 10 ccc			

Current Time: 10 sec

Submit

MTurk Results

- Data:YouTube raw camera uploads
 based on keyword search for 20 categories
- MTurk Human Intelligence Tasks (HITs)
 - paid \$0.02 per 10s clip (~\$7/hr)
 - 4 labelers/clip, finished 9,641 videos in 2 weeks

Non-music Performance, Ice Skating

3. Scene / Object Context

• How to identify events in video?

• not objects, not locations • e.g. "people kissing"

Traditional approach: • get low level features for large training set • statistical classifier

- Our approach • use specialized mid-level detectors (faces, cars)

 - e.g. ''kissing'' =
 - 2 faces moving together

Figure2: We model both object and scene contexts for event modeling. We • learn context, relationships first detect objects such as person using state-of-the-art object detectors (right), and classify video scenes using pre-trained scene models (left). An algorithm is proposed to predict event-object-scene relationship from a sn number of training samples, which is finally used for finding kissing in nev videos.

[Jiang, Li, Chang, TSCVT 2011]

Action-Scene-Object

- Identify relevant objects, scenes from a few training examples (~ 10)
- Learn relationships for action
 - accuracy much better than raw classifier

- Existing joint Audio-Visual atoms are based on simple co-occurrence
 no temporal structure
- Synchrony?
 too hard to detect in web video
- Causality?

 e.g. simple ordering
 ''Causal Audio-Video Atoms' CAVAs

Summary

• Web video analysis

desperate need for automatic analysismust be in terms of objects, scenes, actions

• Joint Audio-Visual Atoms

object-related codebooks for audio, video
MIL of all possible combinations to find cues

• Labeled Data

• Mechanical Turk quickly labels web video examples

• Context-Based Action Detection

• uses mature existing object and scene detectors

• Better "Causal Audio-Visual Atoms"