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0 Model the Whole Speech Signal
- Channel, accent, style
- Timing/rate variation
- Coarticulation

9 Handle Mixtures
9 Respect Diversity
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@ Model the Whole Speech Signal

« HMM is arelatively weak model for speech

freq / kHz

H Al Bl f i
0 1 2 3 4 5 time/sec

- generates something speechlike, but
missing detail of real speech (...)
exponential segment durations

 Only meant for inference of p(X|M)
- to choose between a few Ms

« What would it take to model entire signal?
- capture perceptually sufficient information
- e.g. speech coding quality
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Channel, Accent, Style

 Factors affecting spectral distributions
- just absorbed into model variance?
- or: adapted generically e.g. MLLR

« Channel
- typically fixed per session

e Accent
- typically fixed per speaker

o Style
- particular to application?

« Modeling these factors explicitly
- improves generalization
- reduces variance of models, hence..

- allows better discrimination of voice
from other random stuff
Lab
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Timing/Rate variation

« Timing is weakly modeled with current HMMs
- duration models have little influence on WER

« Some baseline variation
- small improvements with rate-dependent models

o Greatest variation is within phrase?
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SO I ABOUT I ITS STILL POSSIBLE
THOUGHT THAT THINK
AND
- models for within-phrase rate-contours
- use as constraints on recognition
(contrast likelihoods of alternate hypotheses
e.g. in rescoring)
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Lab

ry for the Recognition and
g tion of Speech and Audio

Coarticulation

HMMs are piecewise-constant feature models
- ... at least with Viterbi decoding

- delta features can map trajectories to more
constant values, but just a ‘patch’

More states, more context-dependence
reduces mismatch

- but model is too general: adjacent states are in
fact strongly related

- consequence: insatiable hunger
for 1000s of hours of training data

Generative models of coarticulation not
particularly hard

- e.g. HDM, SSM (Deng, Bridle, ...)
- Inference is hard...

- ... but many new techniques from Machine
Learning community (MCMC, variational, ...)

Dan Ellis
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Outline

e Model the Whole Speech Signal

9 Handle Mixtures
- Frontier applications
- Auditory Scene Analysis
- Multisource models

9 Respect Diversity

@ Other Remarks
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@ Handle Mixtures

« Historically, speech recognition was made
tractable by limiting domain to pure speech

- limited problem still hard enough

- as a consequence: systems discard information
that distinguishes speech/nonspeech

« Many (most?) “frontier applications” involve
nonspeech and mixtures

- meeting recordings
- multimedia indexing
- “Lifelog” audio diary /

—_
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Approaches to handling sound mixtures

o Separate signals, then recognize

- Computational Auditory Scene Analysis (CASA),
Independent Component Analysis

- nice, if you can make it work

« Recognize combined signal
- ‘multicondition training’
- combinatorics seem daunting

 Recognize with parallel models
- optimal inference from full joint state-space

P(O, X, y) = p(X y|O)

- or: skip obscured fragments,
infer from higher-level context

- or do both: missing-data recognition

Lab
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Missing Data Recognition
(Barker, Cooke & Ellis '03)

o« Can evaluate speech models x

P(XiXu)
p(x|m) over a subset of _
dimensions Xy '

p(Xy |m) = jp(xk, Xy|mydx,

p(xklxu<mk)§k
« Hence, missing data recognition:

Present data mask P(x | d) =
~ P(x;|0)

- Pee|a) but need
| TBbeeqT :
P | ) segregation mask
[ TEtsa
™ - P(x | 9)

dimension [J

time [J

 Fit model and segregation given obs'n:

P(X|Y, S
P(M, S|Y) = P(M)_[P(X|I\/I)- (P(lx) )dX-P(S|Y)
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Multi-source decoding

e Search for more than one source

0-0-0-0-0-0-0-0-0- ()
Y(t) S(t)

F<{0" L
S1(1)
0-0-0-0-0-0-0-0-0- qi(t)

 Mutually-dependent data masks

« Use e.g. CASA features to propose masks
- locally coherent regions

 Lots of issues in models, representations,
matching, inference...
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Outline

e Model the Whole Speech Signal
9 Handle Mixtures

e Respect Diversity
- Class-specific classifiers
- Using different information differently

9 Other Remarks
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9 Respect Diversity

« Speech signal is very diverse
- different kinds of phonemes (vowels, stops...)
- different kinds of information (lexical, affective...)
- different timescales (phones, words, phrases...)

 Information needs are diverse
- phoneme classification
- syllable detection
- phrase detection

« Technical approaches are diverse

- the more different they are, the bigger the gain
from combination

- ‘Rover effect’

Lab
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Finding the Information in Speech
(Scanlon & Ellis, Eurospeech '03)

e Mutual Information in time-frequency:
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- acoustic-phonetic features
.. or data-derived near-

Using different information differently

* Integrating paradigms have lots of power
- e.g. HMM does it all: time warp ... LM

.. but can we gain by breaking up the tasks?

- separate vowel center detection
& consonant “adornment” classification

— “Event-based” recognition

- separate specialized
detectors
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Outline

e Model the Whole Speech Signal
9 Handle Mixtures
6 Respect Diversity

e Other Remarks
- Combinations & infrastructure
- How much data?
- Blackboards
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(4] Other Remarks:
Different ways to combine systems

« After each stage of the recognizer

Feature 1
calculation
Feature Acoustic HMM
combination P> Classifier P> decoder > 10% RER

Feature 2 Speech Phone Word

calculation features probabilities hypotheses | m p roveme nt
input (2 streams)

sound

Caicuiation =P Clacsiter 20% RER
Posterior HMM Improvement

> decoder >

combination (2 Streams)
Feature 2 Acoustic Phone Word
calculation > classifier probabilities hypotheses
Input Speech
sound features

HMM 25% RER

Feature 1 Acoustic
calculation > classifier > decoder 1
- Im provement
Hypothesis
combinationf— (5 stream
Feature 2 Acoustic HMM
calculation > classifier > decoder
Input Speech Phone Word

Final
hypo[heses ROVE R)
sound features probabilities hypotheses

%Lob
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Combining modeling techniques:
‘Tandem’ acoustic modeling
(Hermansky, Ellis, Sharma, ICASSP’00)

e To combine Neural Net models with HMMSs:

Input Speech Phone

sound features probabilities Words
Feature Neural 0 m
> calculation > net model —> & .’g

Othogonal Subword
featgres likelihoods Words
i i \ > PCA HTK HTK
Pre-nonlinearit
Y orthogn’'n = GM model ™| decoder [P

outputs

 Result: better performance than either alone!
- Tandem alone: 20% RER improvement

- Posterior combination + Tandem:
50% RER improvement

 Excellent infrastructure for feature experiments
- nets are tolerant of feature eccentricities

- e.g. MSG features—HTK has double the WER of

Tandem version, MSG—net—HTK
Lab
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How Much Data?

 Near-unanimous calls for more data
- sure-fire way to improve accuracy .. a little
- labeled data is expensive, hence limited

e How much data do we need?

- see examples of ‘all’ speech variants?

- infant example: 6 hr/day = 2000 hr/yr
= 10,000 hr by age 5 (Moore graph)

- brute force recognition-by-matching:
every possible syllable? word? phrase? x voices
100 voices x 2k syllables x 4/sec x 100 contexts
= 1,600 hr (6k syl/hr)
(but: distribution of examples)

« What about generalization???

- goal should be abstraction of patterns
from examples corpus

- 1.e. marginals, not full volume of examples
Lab
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Actions & Plans

Blackboards?

H000

Scheduler

next
action

Gaat
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‘ /Problem—solving
model

/
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fig-417-bboard
dpwe 1996apr15

e Events,

Tiers,

Hypothesis Generation &
Verification

= Hearsay Blackboard (1973)

What went wrong last time?

- bad knowledge, blame allocation
- inefficient decoding

- how to incorporate training?

So, this time around?

new mechanisms for blame?
inefficiencies don’'t matter so much?
induction of rules from data?

@ g A Dan Ellis

Laboratory for the Recognition
Organization of Speech and At
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Summary & Conclusions

 Accept that sound is often/usually a mixture
- combine models and/or carve up features

e Use more detailed models of speech
- so we can still recognize after carving up

« Tandem models as enabling infrastructure
- able to glean value from wacky features

« Find novel approaches for recognition
- vowel nuclei + adornments?

Lab
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