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Model the Whole Speech Signal

 

• HMM is a relatively weak model for speech

 

- generates something speechlike, but
- missing detail of real speech (...)
- exponential segment durations

 

• Only meant for inference of 
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• What would it take to model entire signal?

 

- capture perceptually sufficient information
- e.g. speech coding quality
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Channel, Accent, Style

 

• Factors affecting spectral distributions

 

- just absorbed into model variance?
- or: adapted generically e.g. MLLR

 

• Channel

 

- typically fixed per session

 

• Accent

 

- typically fixed per speaker

 

• Style

 

- particular to application?

 

• Modeling these factors explicitly

 

- improves generalization
- reduces variance of models, hence..
- allows better discrimination of voice 

from other random stuff
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Timing/Rate variation

 

• Timing is weakly modeled with current HMMs

 

- duration models have little influence on WER 

 

• Some baseline variation

 

- small improvements with rate-dependent models

 

• Greatest variation is within phrase?

 

- models for within-phrase rate-contours
- use as constraints on recognition 

(contrast likelihoods of alternate hypotheses
e.g. in rescoring)
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Coarticulation

 

• HMMs are piecewise-constant feature models

 

- ... at least with Viterbi decoding
- delta features can map trajectories to more 

constant values, but just a ‘patch’

 

• More states, more context-dependence 
reduces mismatch

 

- but model is too general: adjacent states are in 
fact strongly related

- consequence: insatiable hunger 
for 1000s of hours of training data

 

• Generative models of coarticulation not 
particularly hard

 

- e.g. HDM, SSM (Deng, Bridle, ...)
- inference is hard...
- ... but many new techniques from Machine 

Learning community (MCMC, variational, ...)
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Outline

 

Model the Whole Speech Signal 

Handle Mixtures

 

- Frontier applications
- Auditory Scene Analysis
- Multisource models
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Handle Mixtures

 

• Historically, speech recognition was made 
tractable by limiting domain to pure speech

 

- limited problem still hard enough
- as a consequence: systems discard information 

that distinguishes speech/nonspeech

 

• Many (most?) “frontier applications” involve 
nonspeech and mixtures

 

- meeting recordings
- multimedia indexing
- “Lifelog” audio diary

2



 

Dan Ellis Ideas for Next-Generation ASR (9 of 21) 2003-10-07 

 

Approaches to handling sound mixtures

 

• Separate signals, then recognize

 

- Computational Auditory Scene Analysis (CASA), 
Independent Component Analysis

- nice, if you can make it work

 

• Recognize combined signal

 

- ‘multicondition training’
- combinatorics seem daunting

 

• Recognize with parallel models

 

- optimal inference from full joint state-space

- or: skip obscured fragments, 
infer from higher-level context

- or do both: missing-data recognition
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Missing Data Recognition

 

(Barker, Cooke & Ellis ’03)

 

• Can evaluate speech models 
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• Hence, missing data recognition:

• Fit model and segregation given obs’n:
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Multi-source decoding

 

• Search for more than one source

• Mutually-dependent data masks

• Use e.g. CASA features to propose masks

 

- locally coherent regions

 

• Lots of issues in models, representations, 
matching, inference...
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Outline
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Respect Diversity

• Speech signal is very diverse
- different kinds of phonemes (vowels, stops...)
- different kinds of information (lexical, affective...)
- different timescales (phones, words, phrases...)

• Information needs are diverse
- phoneme classification
- syllable detection
- phrase detection

• Technical approaches are diverse
- the more different they are, the bigger the gain 

from combination
- ‘Rover effect’
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Finding the Information in Speech
(Scanlon & Ellis, Eurospeech ’03)

• Mutual Information in time-frequency:

• Use to select classifier input features
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Basis vectors
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Using different information differently

• Integrating paradigms have lots of power
- e.g. HMM does it all: time warp ... LM

... but can we gain by breaking up the tasks?
- separate vowel center detection 

& consonant “adornment” classification

ÆÆÆÆ “Event-based” recognition
- separate specialized 

detectors

- acoustic-phonetic features
 .. or data-derived near-
equivalents
from e.g. Independent 
Component Analysis
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Outline
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Other Remarks:
Different ways to combine systems

• After each stage of the recognizer
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Combining modeling techniques:
‘Tandem’ acoustic modeling
(Hermansky, Ellis, Sharma, ICASSP’00)

• To combine Neural Net models with HMMs:

• Result: better performance than either alone!
- Tandem alone: 20% RER improvement
- Posterior combination + Tandem:

50% RER improvement

• Excellent infrastructure for feature experiments
- nets are tolerant of feature eccentricities
- e.g. MSG featuresÆHTK has double the WER of 

Tandem version, MSGÆnetÆHTK 
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How Much Data?

• Near-unanimous calls for more data
- sure-fire way to improve accuracy .. a little
- labeled data is expensive, hence limited

• How much data do we need?
- see examples of ‘all’ speech variants?
- infant example: 6 hr/day = 2000 hr/yr 

= 10,000 hr by age 5    (Moore graph)

- brute force recognition-by-matching:
every possible syllable? word? phrase? x voices
100 voices x 2k syllables x 4/sec x 100 contexts
= 1,600 hr  (6k syl/hr)
(but: distribution of examples) 

• What about generalization???
- goal should be abstraction of patterns 

from examples corpus
- i.e. marginals, not full volume of examples
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Blackboards?

• Events, 
Tiers,
Hypothesis Generation &
 Verification
= Hearsay Blackboard (1973) 

• What went wrong last time?
- bad knowledge, blame allocation
- inefficient decoding
- how to incorporate training?

• So, this time around?
- new mechanisms for blame?
- inefficiencies don’t matter so much?
- induction of rules from data?
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Summary & Conclusions

• Accept that sound is often/usually a mixture
- combine models and/or carve up features

• Use more detailed models of speech
- so we can still recognize after carving up

• Tandem models as enabling infrastructure
- able to glean value from wacky features

• Find novel approaches for recognition
- vowel nuclei + adornments?
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