Ideas for Next-Generation ASR

- Model the Whole Speech Signal
- 2 Handle Mixtures
- **3** Respect Diversity
- 4 Other Remarks

Dan Ellis <dpwe@ee.columbia.edu>

Laboratory for Recognition and Organization of Speech and Audio (Lab**ROSA**) Columbia University, New York

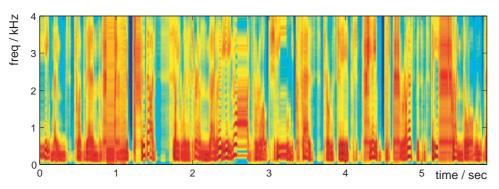
http://labrosa.ee.columbia.edu/

Ideas for Next-Generation ASR (1 of 21)

2003-10-07

Outline

1 Model the Whole Speech Signal


- Channel, accent, style
- Timing/rate variation
- Coarticulation
- **2** Handle Mixtures
- **3** Respect Diversity
- 4 Other Remarks

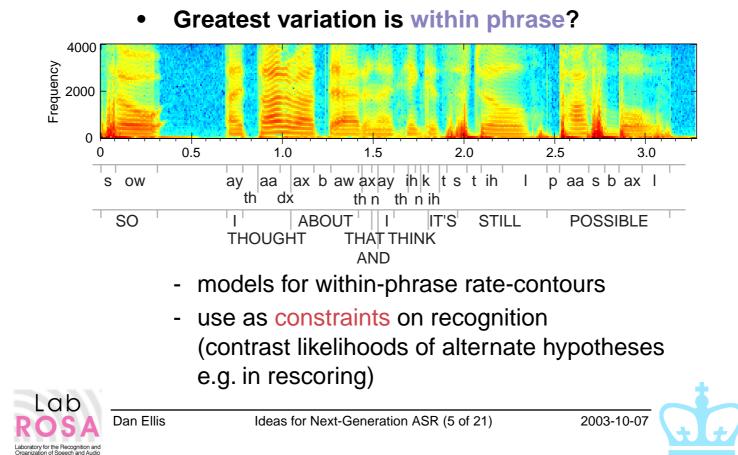
1 Model the Whole Speech Signal

• HMM is a relatively weak model for speech

- generates something speechlike, but
- missing detail of real speech (...)
- exponential segment durations
- Only meant for inference of *p*(*X*|*M*)
 - to choose between a few *M*s
- What would it take to model entire signal?
 - capture perceptually sufficient information
 - e.g. speech coding quality

Channel, Accent, Style

- Factors affecting spectral distributions
 - just absorbed into model variance?
 - or: adapted generically e.g. MLLR
- Channel
 - typically fixed per session
- Accent
 - typically fixed per speaker
- Style
 - particular to application?
- Modeling these factors explicitly
 - improves generalization
 - reduces variance of models, hence..
 - allows better discrimination of voice from other random stuff



Timing/Rate variation

- Timing is weakly modeled with current HMMs
 - duration models have little influence on WER
- Some baseline variation
 - small improvements with rate-dependent models

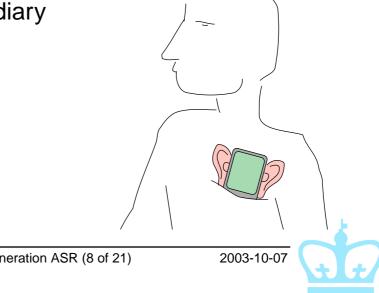
Coarticulation

- HMMs are piecewise-constant feature models
 - ... at least with Viterbi decoding
 - delta features can map trajectories to more constant values, but just a 'patch'
- More states, more context-dependence reduces mismatch
 - but model is too general: adjacent states are in fact strongly related
 - consequence: insatiable hunger for 1000s of hours of training data
- Generative models of coarticulation not particularly hard
 - e.g. HDM, SSM (Deng, Bridle, ...)
 - inference is hard...
 - ... but many new techniques from Machine Learning community (MCMC, variational, ...)

Outline

Handle Mixtures

- Frontier applications
- Auditory Scene Analysis
- Multisource models
- (3) **Respect Diversity**



2

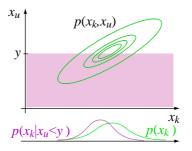
Handle Mixtures

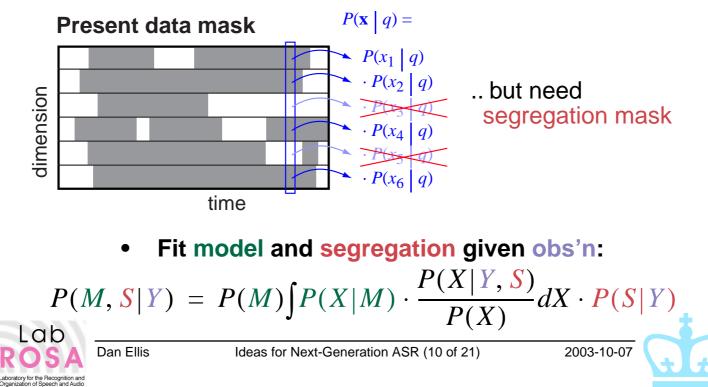
- Historically, speech recognition was made tractable by limiting domain to pure speech
 - limited problem still hard enough
 - as a consequence: systems discard information that distinguishes speech/nonspeech
- Many (most?) "frontier applications" involve nonspeech and mixtures
 - meeting recordings
 - multimedia indexing
 - "Lifelog" audio diary

Approaches to handling sound mixtures

- Separate signals, then recognize
 - Computational Auditory Scene Analysis (CASA), Independent Component Analysis
 - nice, if you can make it work
- Recognize combined signal
 - 'multicondition training'
 - combinatorics seem daunting
- Recognize with parallel models
 - optimal inference from full joint state-space

 $p(O, x, y) \to p(x, y | O)$


- or: skip obscured fragments, infer from higher-level context
- or do both: missing-data recognition


Missing Data Recognition (Barker, Cooke & Ellis '03)

• Can evaluate speech models $p(\mathbf{x}|m)$ over a subset of dimensions x_k

$$p(\mathbf{x}_k|m) = \int p(\mathbf{x}_k, \mathbf{x}_u|m) d\mathbf{x}_u$$

• Hence, missing data recognition:

- Mutually-dependent data masks
- Use e.g. CASA features to propose masks
 - locally coherent regions
- Lots of issues in models, representations, matching, inference...

Outline

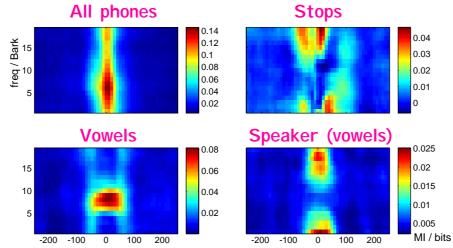
- 1 Model the Whole Speech Signal
- 2 Handle Mixtures

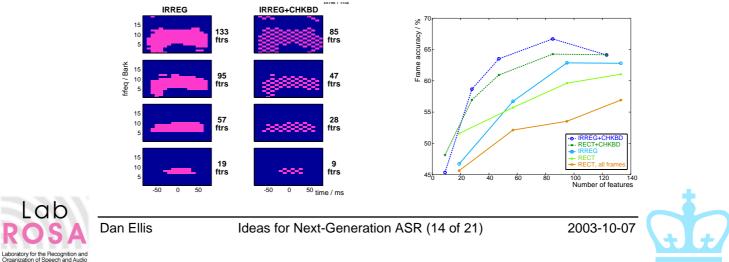
3 Respect Diversity

- Class-specific classifiers
- Using different information differently

Respect Diversity

- Speech signal is very diverse
 - different kinds of phonemes (vowels, stops...)
 - different kinds of information (lexical, affective...)
 - different timescales (phones, words, phrases...)
- Information needs are diverse
 - phoneme classification
 - syllable detection
 - phrase detection
- Technical approaches are diverse
 - the more different they are, the bigger the gain from combination
 - 'Rover effect'



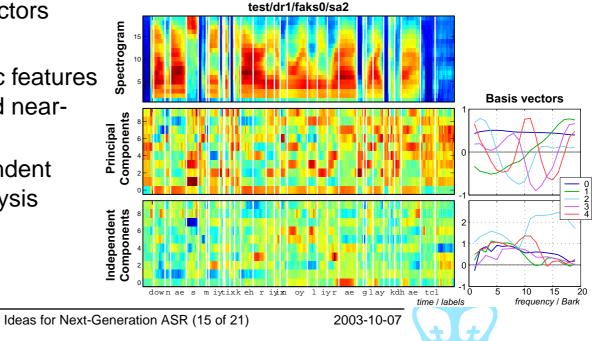

Finding the Information in Speech

(Scanlon & Ellis, Eurospeech '03)

• Mutual Information in time-frequency:

• Use to select classifier input features

Using different information differently


- Integrating paradigms have lots of power
 - e.g. HMM does it all: time warp ... LM
 - ... but can we gain by breaking up the tasks?
 - separate vowel center detection
 & consonant "adornment" classification

→ "Event-based" recognition

- separate specialized detectors
- acoustic-phonetic features

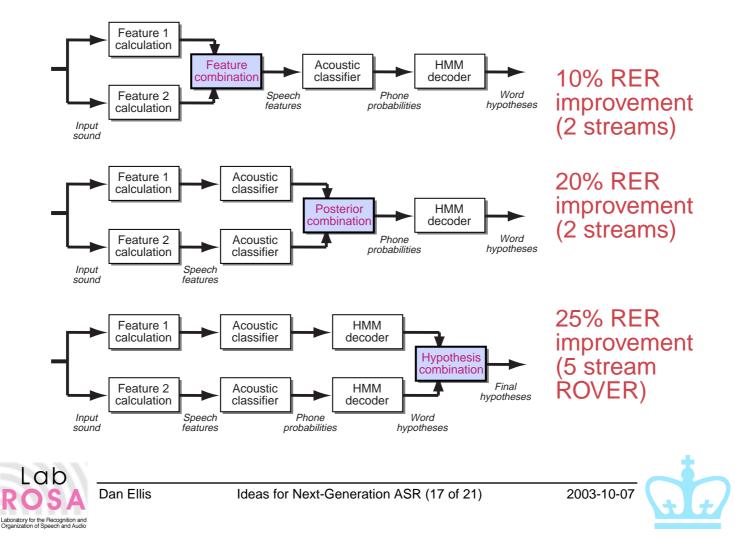
 or data-derived nearequivalents
 from e.g. Independent

Component Analysis

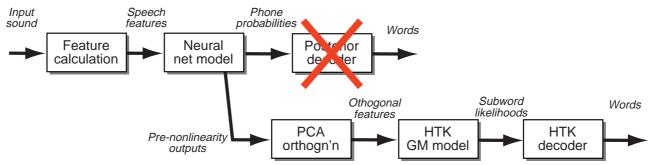
Outline

- **1** Model the Whole Speech Signal
- 2 Handle Mixtures
- **3** Respect Diversity

4 Other Remarks


- Combinations & infrastructure
- How much data?
- Blackboards

4 Other Remarks: Different ways to combine systems


• After each stage of the recognizer

Combining modeling techniques: 'Tandem' acoustic modeling

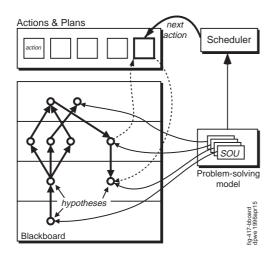
(Hermansky, Ellis, Sharma, ICASSP'00)

• To combine Neural Net models with HMMs:

- Result: better performance than either alone!
 - Tandem alone: 20% RER improvement
 - Posterior combination + Tandem:
 50% RER improvement
- Excellent infrastructure for feature experiments
 - nets are tolerant of feature eccentricities
 - e.g. MSG features→HTK has double the WER of Tandem version, MSG→net→HTK

How Much Data?

- Near-unanimous calls for more data
 - sure-fire way to improve accuracy .. a little
 - labeled data is expensive, hence limited


• How much data do we need?

- see examples of 'all' speech variants?
- infant example: 6 hr/day = 2000 hr/yr
 = 10,000 hr by age 5 (Moore graph)
- brute force recognition-by-matching:
 every possible syllable? word? phrase? x voices 100 voices x 2k syllables x 4/sec x 100 contexts = 1,600 hr (6k syl/hr) (but: distribution of examples)
- What about generalization???
 - goal should be abstraction of patterns from examples corpus
 - i.e. marginals, not full volume of examples

Blackboards?

- Events, Tiers, Hypothesis Generation & Verification
 - = Hearsay Blackboard (1973)
- What went wrong last time?
 - bad knowledge, blame allocation
 - inefficient decoding
 - how to incorporate training?
- So, this time around?
 - new mechanisms for blame?
 - inefficiencies don't matter so much?
 - induction of rules from data?

Summary & Conclusions

- Accept that sound is often/usually a mixture
 - combine models and/or carve up features
- Use more detailed models of speech
 - so we can still recognize after carving up
- Tandem models as enabling infrastructure
 - able to glean value from wacky features
- Find novel approaches for recognition
 - vowel nuclei + adornments?

