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Auditory Scene Analysis

 

•

 

Auditory Scene Analysis

 

: describing a complex 
sound in terms of high-level sources/events

 

- ... like listeners do

 

• Hearing is 

 

ecologically

 

 grounded

 

- reflects ‘natural scene’ properties
- subjective, not absolute
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Sound, mixtures, and learning

 

• Sound

 

- carries useful information about the world
- complements vision

 

• Mixtures

 

- .. are the rule, not the exception
- medium is ‘transparent’, sources are many
- must be handled!

 

• Learning

 

- the ‘speech recognition’ lesson:
let the data do the work

- like listeners
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The problem with recognizing mixtures

 

“Imagine two narrow channels dug up from the edge of a 
lake, with handkerchiefs stretched across each one.  
Looking only at the motion of the handkerchiefs, you are 
to answer questions such as: How many boats are there 
on the lake and where are they?”   

 

(after Bregman’90)

 

• Received waveform is a mixture

 

- two sensors, N signals ... 

 

underconstrained

 

• Disentangling mixtures as the primary goal?

 

- perfect solution is not possible
- need experience-based 

 

constraints
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Human Auditory Scene Analysis

 

 
(Bregman 1990)

• How do people analyze sound mixtures?

 

- break mixture into small 

 

elements

 

 (in time-freq)
- elements are 

 

grouped

 

 in to sources using 

 

cues

 

- sources have aggregate 

 

attributes

 

• Grouping ‘rules’ (Darwin, Carlyon, ...):

 

- cues: common onset/offset/modulation, 
harmonicity, spatial location, ...
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Cues to simultaneous grouping

 

• Elements + attributes

• Common onset

 

- simultaneous energy has common source

 

• Periodicity

 

- energy in different bands with same cycle

 

• Other cues

 

- spatial (ITD/IID), familiarity, ...
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The effect of context

 

• Context can create an ‘expectation’: 
i.e. a bias towards a particular interpretation

• e.g. Bregman’s “old-plus-new” principle:

 

A change in a signal will be interpreted as an 

 

added

 

 source whenever possible

- a different division of the same energy 
depending on what preceded it
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Computational Auditory Scene Analysis
(CASA)

 

• Goal: Automatic sound organization ;
Systems to ‘pick out’ sounds in a mixture

 

- ... like people do

 

• E.g. voice against a noisy background

 

- to improve speech recognition

 

• Approach:

 

- psychoacoustics describes grouping ‘rules’
- ... just implement them?

CASA
Object 1 description
Object 2 description
Object 3 description
...
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The Representational Approach

 

(Brown & Cooke 1993)

 

• Implement psychoacoustic theory

 

- ‘bottom-up’ processing
- uses common onset & periodicity cues

 

• Able to extract voiced speech:
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Restoration in sound perception

 

• Auditory ‘illusions’ = hearing what’s not there

• The continuity illusion

• SWS

 

- duplex perception

 

• How to model in CASA?

1000

2000

4000

f/Hz ptshort

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
time/s

5

10

15f/Bark S1−env.pf:0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

40

60

80



 

Sound, mixtures, learning @ OSU - Dan Ellis 2002-08-10 - 11/37

 

Adding top-down constraints

 

Perception is not 

 

direct

 

but a 

 

search

 

 for 

 

plausible hypotheses

 

• Data-driven (bottom-up)...

 

- objects irresistibly appear

 

vs. Prediction-driven (top-down)

 

- match observations 
with parameters of a world-model

- need world-model constraints...
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Approaches to sound mixture recognition

 

• Recognize combined signal

 

- ‘multicondition training’
- combinatorics..

 

• Separate signals

 

- e.g. CASA, ICA
- nice, if you can do it

 

• Segregate features into fragments

 

- then missing-data recognition
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Aside: Evaluation

 

• Evaluation is a big problem for CASA

 

- what is the goal, really?
- what is a good test domain?
- how do you measure performance?

 

• SNR improvement

 

- not easy given only before-after signals:
correspondence problem

- can do with fixed filtering mask; 
rewards removing signal as well as noise

 

• ASR improvement

 

- recognizers typically very sensitive to artefacts

 

• ‘Real’ task?

 

- mixture corpus with specific sound events...
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Speech recognition & mixtures

 

• Speech recognizers are the most successful 
and sophisticated acoustic recognizers to date

• ‘State of the art’ word-error rates (WERs):

 

- 2% (dictation) - 30% (phone conv’ns)
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Learning acoustic models

 

• Goal: describe  with e.g. GMMs

• Separate models for each class

 

- generalization as blurring

 

• Training data labels from:

 

- manual annotation
- ‘best path’ from earlier classifier (Viterbi)
- EM: joint estimation of labels & pdfs

p X M( )

Labeled
training

examples
{xn,ωxn}

Sort
according
to class

Estimate
conditional pdf

for class ω1

p(x|ω1)



Sound, mixtures, learning @ OSU - Dan Ellis 2002-08-10 - 17/37

Speech + noise mixture recognition

• Background noise is biggest (?) problem 
facing current ASR

• Feature invariance approach:
Design features to reflect only speech
- e.g. normalization, mean subtraction

• Ideally, models of clean speech will match 
speech in noise
- .. although training on noisy examples can’t hurt

• Static noise is relatively easy
- but: non-static noise?

• Alternative: 
More complex models of the signal
- separate models for speech and ‘rest’
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HMM decomposition
(e.g. Varga & Moore 1991, Roweis 2000)

• Total signal model has independent state 
sequences for 2+ component sources

• New combined state space q' = {q1 q2}

- new observation pdfs for each combination

model 1

model 2 

observations / time

p X q1 q2,( )
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Problems with HMM decomposition

• O(qk)
N is exponentially large...

• Feature normalization no longer holds!
- each source has a different gain
→ model at various SNRs?

- models typically don’t use overall energy C0

- each source has a different channel H[k]

• Modeling every possible sub-state combination 
is inefficient, inelegant and impractical
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Fragment Recognition
(Jon Barker & Martin Cooke, Sheffield)

• Signal separation is too hard!
Instead:
- segregate features into partially-observed 

sources
- then classify

• Made possible by ‘missing data’ recognition
- integrate over uncertainty in observations 

for optimal posterior distribution

• Goal:
Relating clean speech models P(X|M)
to speech + noise mixture observations
- .. and making it tractable

3
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Comparing different segregations

• Standard classification chooses between 
models M to match source features X

• Mixtures → observed features Y, segregation S, 
all related by 

- spectral features allow clean relationship

• Joint classification of model and segregation:

- integral collapses in several cases...

M∗ P M X( )
M

argmax P X M( )
P M( )
P X( )
--------------⋅

M
argmax = =

P X Y S,( )

freq

Observation
Y(f )

Segregation S

Source
X(f )

P M S Y,( ) P M( ) P X M( )
P X Y S,( )

P X( )
-------------------------⋅ Xd∫ P S Y( )⋅=
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Calculating fragment matches

• P(X|M) - the clean-signal feature model

• P(X|Y,S)/P(X) - is X ‘visible’ given segregation?

• Integration collapses some channels...

• P(S|Y) - segregation inferred from observation
- just assume uniform, find S for most likely M 
- use extra information in Y to distinguish S’s

e.g. harmonicity, onset grouping

• Result: 
- probabilistically-correct relation between 

clean-source models P(X|M)
and inferred contributory source P(M,S|Y)

P M S Y,( ) P M( ) P X M( )
P X Y S,( )

P X( )
-------------------------⋅ Xd∫ P S Y( )⋅=
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Speech fragment decoder results

• Simple P(S|Y) model forces contiguous regions 
to stay together
- big efficiency gain when searching S space

• Clean-models-based recognition 
rivals trained-in-noise recognition
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Multi-source decoding

• Search for more than one source

• Mutually-dependent data masks

• Use e.g. CASA features to propose masks
- locally coherent regions

• Theoretical vs. practical limits

Y(t)

S1(t)
q1(t)

S2(t)
q2(t)
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Alarm sound detection

• Alarm sounds have particular structure
- people ‘know them when they hear them’
- clear even at low SNRs

• Why investigate alarm sounds?
- they’re supposed to be easy
- potential applications...

• Contrast two systems:
- standard, global features, P(X|M)
- sinusoidal model, fragments, P(M,S|Y)
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Alarms: Sound (representation)

• Standard system: Mel Cepstra
- have to model alarms in noise context:

each cepstral element depends on whole signal

• Contrast system: Sinusoid groups
- exploit sparse, stable nature of alarm sounds
- 2D-filter spectrogram to enhance harmonics
- simple magnitude threshold, track growing
- form groups based on common onset

• Sinusoid representation is already fragmentary
- does not record non-peak energies
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Alarms: Mixtures

• Effect of varying SNR on representations:
- sinusoid peaks have ~ invariant properties

Sine track groups Cepstra (normalized)

0

5

10

0

5

10

0 5 10 15 20 25
-5

0

5

time / s

1

2

1

2 3

1
2 3 4

0 5 10 15 20 25 time / s

60
 d

B
 S

N
R

10
 d

B
 S

N
R

0 
d

B
 S

N
R



Sound, mixtures, learning @ OSU - Dan Ellis 2002-08-10 - 30/37

Alarms: Learning

• Standard: train MLP on noisy examples

• Alternate: learn distributions of group features
- duration, frequency deviation, amp. modulation...

- underlying models are clean (isolated)
- recognize in different contexts...
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Alarms: Results

• Both systems commit many insertions at 0dB 
SNR, but in different circumstances:
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Alarms: Summary

• Sinusoid domain
- feature components belong to 1 source
- simple ‘segregation’ (grouping) model
- alarm model as properties of group
- robust to partial feature observation

• Future improvements
- more complex alarm class models
- exploit repetitive structure of alarms
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Future work

• CASA as generative model parameterization:

5

Source
models

Source
signals

Received
signals

Observations

Observations
O

Model
dependence

Channel
parameters

M1 Y1 X1

C1

M2 Y2 X2

C2

O

{Mi}{Ki}

p(X|Mi,Ki)

Θ

Generation
model

Analysis
structure

Fragment
formation

Mask
allocation

Likelihood
evaluation

Model
fitting



Sound, mixtures, learning @ OSU - Dan Ellis 2002-08-10 - 35/37

Learning source models

• The speech recognition lesson:
Use the data as much as possible
- what can we do with unlimited data feeds?

• Data sources
- clean data corpora
- identify near-clean segments in real sound
- build up ‘clean’ views from partial observations?

• Model types
- templates
- parametric/constraint models
- HMMs

• Hierarchic classification
vs. individual characterization...
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Personal Audio Applications

• Smart PDA records everything

• Only useful if we have index, summaries
- monitor for particular sounds
- real-time description

• Scenarios

- personal listener → summary of your day
- future prosthetic hearing device
- autonomous robots

• Meeting data, ambulatory audio
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Summary

• Sound
- carries important information

• Mixtures
- need to segregate different source properties
- fragment-based recognition

• Learning
- information extracted by classification
- models guide segregation

• Alarm sounds
- simple example of fragment recognition

• General sounds
- recognize simultaneous components
- acquire classes from training data
- build index, summary of real-world sound
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