Sound, Mixtures, and Learning

Dan Ellis
dpwe@ee.columbia.edu
Laboratory for Recognition and Organization of Speech and Audio (LabROSA)
Electrical Engineering, Columbia University
http://labrosa.ee.columbia.edu/

Outline

(1) Auditory Scene Analysis
(2) Speech Recognition \& Mixtures
(3) Fragment Recognition
(4) Alarm Sound Detection
(5) Future Work

Sound, mixtures, learning @ OSU - Dan Ellis

Auditory Scene Analysis

- Auditory Scene Analysis: describing a complex sound in terms of high-level sources/events
- ... like listeners do
- Hearing is ecologically grounded
- reflects 'natural scene' properties
- subjective, not absolute

Sound, mixtures, and learning

- Sound
- carries useful information about the world
- complements vision
- Mixtures
- .. are the rule, not the exception
- medium is 'transparent', sources are many
- must be handled!
- Learning
- the 'speech recognition' lesson:
let the data do the work
- like listeners

The problem with recognizing mixtures

"Imagine two narrow channels dug up from the edge of a lake, with handkerchiefs stretched across each one. Looking only at the motion of the handkerchiefs, you are to answer questions such as: How many boats are there on the lake and where are they?" (after Bregman'90)

- Received waveform is a mixture
- two sensors, N signals ... underconstrained
- Disentangling mixtures as the primary goal?
- perfect solution is not possible
- need experience-based constraints

Human Auditory Scene Analysis

(Bregman 1990)

- How do people analyze sound mixtures?
- break mixture into small elements (in time-freq)
- elements are grouped in to sources using cues
- sources have aggregate attributes
- Grouping 'rules' (Darwin, Carlyon, ...):
- cues: common onset/offset/modulation, harmonicity, spatial location, ...

(after Darwin, 1996)

Cues to simultaneous grouping

- Elements + attributes

- Common onset
- simultaneous energy has common source
- Periodicity
- energy in different bands with same cycle
- Other cues
- spatial (ITD/IID), familiarity, ...

The effect of context

- Context can create an 'expectation’: i.e. a bias towards a particular interpretation
- e.g. Bregman's "old-plus-new" principle:

A change in a signal will be interpreted as an added source whenever possible

- a different division of the same energy depending on what preceded it

Computational Auditory Scene Analysis (CASA)

- Goal: Automatic sound organization ; Systems to 'pick out' sounds in a mixture
- ... like people do
- E.g. voice against a noisy background
- to improve speech recognition
- Approach:
- psychoacoustics describes grouping 'rules'
- ... just implement them?

The Representational Approach

(Brown \& Cooke 1993)

- Implement psychoacoustic theory

- 'bottom-up’ processing
- uses common onset \& periodicity cues
- Able to extract voiced speech:

Restoration in sound perception

- Auditory 'illusions' = hearing what's not there
- The continuity illusion

- SWS

- duplex perception
- How to model in CASA?

Adding top-down constraints

Perception is not direct but a search for plausible hypotheses

- Data-driven (bottom-up)...

- objects irresistibly appear
vs. Prediction-driven (top-down)

- match observations with parameters of a world-model
- need world-model constraints...

Approaches to sound mixture recognition

- Recognize combined signal
- 'multicondition training'
- combinatorics..
- Separate signals
- e.g. CASA, ICA
- nice, if you can do it
- Segregate features into fragments
- then missing-data recognition

Aside: Evaluation

- Evaluation is a big problem for CASA
- what is the goal, really?
- what is a good test domain?
- how do you measure performance?
- SNR improvement
- not easy given only before-after signals: correspondence problem
- can do with fixed filtering mask; rewards removing signal as well as noise
- ASR improvement
- recognizers typically very sensitive to artefacts
- 'Real' task?
- mixture corpus with specific sound events...

Outline

(1) Auditory Scene Analysis
(2) Speech Recognition \& Mixtures

- standard ASR
- approaches to speech + noise
(3) Fragment Recognition
(4) Alarm Sound Detection
(5) Future Work

Sound, mixtures, learning @ OSU - Dan Ellis

(2) Speech recognition \& mixtures

- Speech recognizers are the most successful and sophisticated acoustic recognizers to date

- 'State of the art' word-error rates (WERs):
- 2\% (dictation) - 30\% (phone conv'ns)

Learning acoustic models

- Goal: describe $p(X \mid M)$ with e.g. GMMs

- Separate models for each class
- generalization as blurring
- Training data labels from:
- manual annotation
- 'best path' from earlier classifier (Viterbi)
- EM: joint estimation of labels \& pdfs

Speech + noise mixture recognition

- Background noise is biggest (?) problem facing current ASR
- Feature invariance approach:

Design features to reflect only speech

- e.g. normalization, mean subtraction
- Ideally, models of clean speech will match speech in noise
- .. although training on noisy examples can't hurt
- Static noise is relatively easy
- but: non-static noise?
- Alternative:

More complex models of the signal

- separate models for speech and 'rest'

HMM decomposition

(e.g. Varga \& Moore 1991, Roweis 2000)

- Total signal model has independent state sequences for 2+ component sources
model 2

- New combined state space $q^{\prime}=\left\{q_{1} q_{2}\right\}$
- new observation pdfs for each combination

$$
p\left(X \mid q_{1}, q_{2}\right)
$$

Problems with HMM decomposition

- $O\left(q_{k}\right)^{N}$ is exponentially large...
- Feature normalization no longer holds!
- each source has a different gain
\rightarrow model at various SNRs?
- models typically don't use overall energy C_{0}
- each source has a different channel $H[k]$
- Modeling every possible sub-state combination is inefficient, inelegant and impractical

Outline

(1) Auditory Scene Analysis
(2) Speech Recognition \& Mixtures
(3) Fragment Recognition

- separating signals vs. separating features
- missing data recognition
- recognizing multiple sources

4. Alarm Sound Detection
(5) Future Work

Sound, mixtures, learning @ OSU - Dan Ellis

Fragment Recognition

(Jon Barker \& Martin Cooke, Sheffield)

- Signal separation is too hard! Instead:
- segregate features into partially-observed sources
- then classify
- Made possible by 'missing data' recognition
- integrate over uncertainty in observations for optimal posterior distribution
- Goal:

Relating clean speech models $P(X \mid M)$ to speech + noise mixture observations

- .. and making it tractable

Comparing different segregations

- Standard classification chooses between models M to match source features X
$M^{*}=\underset{M}{\operatorname{argmax}} P(M \mid X)=\underset{M}{\operatorname{argmax}} P(X \mid M) \cdot \frac{P(M)}{P(X)}$
- Mixtures \rightarrow observed features Y, segregation S, all related by $P(X \mid Y, S)$

- spectral features allow clean relationship
- Joint classification of model and segregation:
$P(M, S \mid Y)=P(M) \int P(X \mid M) \cdot \frac{P(X \mid Y, S)}{P(X)} d X \cdot P(S \mid Y)$
- integral collapses in several cases...

Calculating fragment matches

$$
P(M, S \mid Y)=P(M) \int P(X \mid M) \cdot \frac{P(X \mid Y, S)}{P(X)} d X \cdot P(S \mid Y)
$$

- $\quad P(X \mid M)$ - the clean-signal feature model
- $P(X \mid Y, S) / P(X)$ - is X 'visible' given segregation?
- Integration collapses some channels...
- $\quad P(S \mid Y)$ - segregation inferred from observation
- just assume uniform, find S for most likely M
- use extra information in Y to distinguish S 's e.g. harmonicity, onset grouping
- Result:
- probabilistically-correct relation between clean-source models $P(X \mid M)$ and inferred contributory source $P(M, S \mid Y)$

Speech fragment decoder results

- Simple $P(S \mid Y)$ model forces contiguous regions to stay together
- big efficiency gain when searching S space

- Clean-models-based recognition rivals trained-in-noise recognition

Multi-source decoding

- Search for more than one source

- Mutually-dependent data masks
- Use e.g. CASA features to propose masks
- locally coherent regions
- Theoretical vs. practical limits

Outline

(1) Auditory Scene Analysis
(2) Speech Recognition \& Mixtures
(3) Fragment Recognition
(4) Alarm Sound Detection

- sound
- mixtures
- learning
(5) Future Work

Sound, mixtures, learning @ OSU - Dan Ellis

(4) Alarm sound detection

- Alarm sounds have particular structure
- people 'know them when they hear them'
- clear even at low SNRs

- Why investigate alarm sounds?
- they're supposed to be easy
- potential applications...
- Contrast two systems:
- standard, global features, $P(X \mid M)$
- sinusoidal model, fragments, $P(M, S \mid Y)$

Alarms: Sound (representation)

- Standard system: Mel Cepstra
- have to model alarms in noise context: each cepstral element depends on whole signal
- Contrast system: Sinusoid groups
- exploit sparse, stable nature of alarm sounds
- 2D-filter spectrogram to enhance harmonics
- simple magnitude threshold, track growing
- form groups based on common onset

- Sinusoid representation is already fragmentary
- does not record non-peak energies

Alarms: Mixtures

- Effect of varying SNR on representations:
- sinusoid peaks have ~ invariant properties

Alarms: Learning

- Standard: train MLP on noisy examples

- Alternate: learn distributions of group features
- duration, frequency deviation, amp. modulation...

- underlying models are clean (isolated)
- recognize in different contexts...

Alarms: Results

MLP classifier output

- Both systems commit many insertions at 0dB SNR, but in different circumstances:

Noise	Neural net system			Sinusoid model system		
	Del	Ins	Tot	Del	Ins	Tot
1 (amb)	$7 / 25$	2	36%	$14 / 25$	1	60%
2 (bab)	$5 / 25$	63	272%	$15 / 25$	2	68%
3 (spe)	$2 / 25$	68	280%	$12 / 25$	9	84%
4 (mus)	$8 / 25$	37	180%	$9 / 25$	135	576%
Overall	$\mathbf{2 2 / 1 0 0}$	170	$\mathbf{1 9 2 \%}$	$\mathbf{5 0 / 1 0 0}$	147	$\mathbf{1 9 7 \%}$

Alarms: Summary

- Sinusoid domain
- feature components belong to 1 source
- simple ‘segregation’ (grouping) model
- alarm model as properties of group
- robust to partial feature observation
- Future improvements
- more complex alarm class models
- exploit repetitive structure of alarms

Outline

(1) Auditory Scene Analysis
(2) Speech Recognition \& Mixtures
(3) Fragment Recognition
4. Alarm Sound Detection
(5) Future Work

- generative models \& inference
- model acquisition
- ambulatory audio

Future work

- CASA as generative model parameterization:

Analysis structure

Learning source models

- The speech recognition lesson:

Use the data as much as possible

- what can we do with unlimited data feeds?
- Data sources
- clean data corpora
- identify near-clean segments in real sound
- build up 'clean' views from partial observations?
- Model types
- templates
- parametric/constraint models
- HMMs
- Hierarchic classification vs. individual characterization...

Personal Audio Applications

- Smart PDA records everything
- Only useful if we have index, summaries
- monitor for particular sounds
- real-time description
- Scenarios

- personal listener \rightarrow summary of your day
- future prosthetic hearing device
- autonomous robots
- Meeting data, ambulatory audio

Summary

- Sound
- carries important information
- Mixtures
- need to segregate different source properties
- fragment-based recognition
- Learning
- information extracted by classification
- models guide segregation
- Alarm sounds
- simple example of fragment recognition
- General sounds
- recognize simultaneous components
- acquire classes from training data
- build index, summary of real-world sound

