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Sound content analysis
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Sound content analysis  - Dan Ellis 2000-02-

• Overall goal:  ‘Useful’ data from sound

- which depends on the goal

• Involving:
- continuous → discrete
- source separation

- extract ‘semantic’ content
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The space of sound analysis research
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Speech recognition: Dictation
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Sound content analysis  - Dan Ellis 2000-02-

• Observations X = {X1..XN} → States S

• State sequence { Si} (e.g. phones) defi

• Training (on large datasets) is the key 
- EM iteration for acoustic & transition 

S∗ P S X( )
S

argmax =

P Xi Si( ) P Si Si 1–( )⋅
i

∏S
argmax =

P S X,( )
P X( )

-------------------
S

argmax =

acoustic prob. transition

Markov assumption
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The connectionist-HMM hybrid

 

(Morgan & Bourlard, 1995)
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Sound content analysis  - Dan Ellis 2000-02-

• P(Xi|Si) is acoustic likelihood  model

- model distribution with, e.g., Gaussia

• Replace with posterior , P(Si|Xi):

- neural network estimates phone give
- discriminative

• Simpler structure for research
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Visualizing speech recognition
Sound content analysis  - Dan Ellis 2000-02-
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Combination schemes

 

• How to use complementary features?
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Sound content analysis  - Dan Ellis 2000-02-
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Combining feature streams
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74.1%

63.0%
Sound content analysis  - Dan Ellis 2000-02-0

• How to allocate feature dimensions to m
- lower-dimension models train more q
- higher-dimension models find more in

• PLP & MSG for Aurora ( digits  in noise
- PLP are ‘conventional’ features
- MSG developed as robust alternative
- Evaluate by word-error rate (WER) co

default baseline

Features Parameters baseli

plp12•dplp12 136k

plp12^dplp12 124k

msg3a•msg3b 145k 1

msg3a^msg3b 133k

plp12•dplp12•msg3a•msg3b 281k

plp12^dplp12^msg3a^msg3b 245k

plp12^dplp12•msg3a^msg3b 257k
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Tandem connectionist models

 

(with Hermansky et al., OGI)
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Sound content analysis  - Dan Ellis 2000-02-0

• How can we combine neural net & GM 

- (GMM system does not know they ar

• Result: better performance than either a
- neural net has trained discriminatively
- GMM HMMs learn context-dependen
→extract complementary info from train

System-features baseline WER rati

HTK-mfcc 100.0%

Hybrid-mfcc 84.6%

Tandem-mfcc 64.5%

Tandem-plp+msg 47.2%

Pre-nonlinearity
outputs

PCA
orthogn'n

HTK
GM model

Speech
features

Feature
calculation

Input
sound

Neural
net model

(Posterior
decoder)

(Phone
probabilities)

(Hybrid system
output)

Subword
likelihoods

de

Othogonal
features



 

8 - 12

 

Aurora “Distributed SR” evaluation
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Sound content analysis  - Dan Ellis 2000-02-0

• 7 telecoms company submissions:

- Tandem systems from OGI-ICSI-Qua
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Outstanding issues in speech recognition

   
Sound content analysis  - Dan Ellis 2000-02-0

• Are we on the right path?
- useful dictation products exist
- evaluation results improve every year
- .. but appear to be asymptoting

• Is dictation enough?
- a useful focus initially
- .. but not speech understanding
- .. and has skewed research

• What should be our research priorities?
- straight ASR research is hard to fund
- need to look at harder domains
- need to connect it to applications
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Outline
Sound content analysis  - Dan Ellis 2000-02-0
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Auditory Scene Analysis (ASA)
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Sound content analysis  - Dan Ellis 2000-02-0

“The organization of sound scenes 
according to their inferred sources”

• Sounds rarely occur in isolation
- need to ‘separate’ for useful informati

• Human audition is very effective
- computational models have a lot to le

200

400

1000

2000

4000

f/Hz city22

0 1 2 3 4 5 6 7 8



8 - 16

Psychology of ASA
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Sound content analysis  - Dan Ellis 2000-02-0

• Extensive experimental research
- perception of simplified stimuli (sinus

• “Auditory Scene Analysis” [Bregman 19
- first: break mixture into small elemen
- elements are grouped in to sources u

• Grouping ‘rules’ (Darwin, Carlyon, ...):
- common onset/offset/modulation, har

spatial location, ...
- relate to intrinsic (ecological) regulari

Frequency
analysis

Grouping
mechanism

Onset
map

Harmonicity
map

Position
map

(after Darwin, 1996)
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Computational Auditory Scene Analysis
(CASA)

 1992):

es

Source
groups
Sound content analysis  - Dan Ellis 2000-02-0

• Literal model of Bregman... (e.g. Brown

• Goals
- identify and segregate different sourc
- resynthesize separate outputs!

input
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(maps)
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Front end Object
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time
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Grouping model results

0.8 1.0 time/s
Sound content analysis  - Dan Ellis 2000-02-0

• Able to extract voiced speech:

• Limitations
- resynthesis via filter-mask
- only periodic targets
- robustness of discrete objects
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Context, expectations & predictions
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Sound content analysis  - Dan Ellis 2000-02-0

Perception is not direct
but a search  for plausible hypotheses

• Bregman’s “old-plus-new” principle:
A change in a signal will be interprete
added source whenever possible

• E.g. the ‘continuity illusion’:

- tones alternates with noise bursts
- noise is strong enough to mask tone

... so listener discriminate presence
- continuous tone perceived for gaps ~

→ Inference acts at low, preconscious leve
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Modeling top-down processing:
‘Prediction-driven’ CASA (PDCASA):

ergy
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Sound content analysis  - Dan Ellis 2000-02-0

• Data-driven...

vs. Prediction-driven

• PDCASA key features:
- ‘complete explanation’ of all scene en
- vocabulary of periodic/noise/transient
- multiple hypotheses
- explanation hierarchy
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PDCASA for the continuity illusion

ortions:
Sound content analysis  - Dan Ellis 2000-02-0

• Subjects hear the tone as continuous
... if the noise is a plausible masker

• Data-driven analysis gives just visible p

• Prediction-driven can infer masking:
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PDCASA analysis of a complex scene
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Sound content analysis  - Dan Ellis 2000-02-0
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CASA for speech recognition
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Sound content analysis  - Dan Ellis 2000-02-0

• Data-driven: CASA as preprocessor
- problems with ‘holes’ (but: Okuno)
- doesn’t exploit knowledge of speech 

• Missing data (Cooke &c, de Cheveigné
- CASA cues distinguish present/absen
- RESPITE project: modifications to rec

• Prediction-driven: speech as componen
- same ‘reconciliation’ of speech hypoth
- need to express ‘predictions’ in signa
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Other signal-separation approaches

tly

ki ’94)
aximizing 
Sound content analysis  - Dan Ellis 2000-02-0

• HMM decomposition (RK Moore ’86)
- recover combined source states direc

• Blind source separation (Bell & Sejnows
- find exact separation parameters by m

statistic e.g. signal independence

model 1

model 2

observations
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Outstanding issues in CASA

tion
Sound content analysis  - Dan Ellis 2000-02-0

• What is the architecture?
- data-driven versus prediction-driven
- representations at different levels
- hypothesis search

• How to combine different cues?
- priority of different cues
- resolving conflicting cues
- bottom-up versus top-down

• How to exploit training data?
- .. the big lesson from speech recogni

• Evaluation
- .. a more subtle lesson
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Outline
Sound content analysis  - Dan Ellis 2000-02-0
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Audio content indexing:
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Sound content analysis  - Dan Ellis 2000-02-0

Spoken document retrieval (SDR

• Idea: speech recognition transcripts as 

• Best broadcast news systems are not g
- 15-30% WER on real broadcasts

• Word errors vary in their impact:

F0: THE VERY EARLY RETURNS OF THE NICARAGUAN PRESIDENTIA
SEEMED TO FADE BEFORE THE LOCAL MAYOR ON A LOT OF LAW

F4: AT THIS STAGE OF THE ACCOUNTING FOR SEVENTY SCOTCH ON
DANIEL ORTEGA IS IN SECOND PLACE THERE WERE TWENTY TH
PRESIDENTIAL CANDIDATES OF THE ELECTION

F5: THE LABOR MIGHT DO WELL TO REMEMBER THE LOST A MAJOR
TRANSATLANTIC CONNECT TO A CORPORATION IN BOTH CONSE
OFFICIALS FROM BRITAIN GOING TO WASHINGTON THEY WENT T
GEORGE BUSH ON HOW TO WIN A SECOND TO NONE IN LONDON
STEPHEN BEARD FOR MARKETPLACE

• Good enough for information retrieval (I
- e.g. TREC-8 average precision:

reference transcript ~ 0.5
30% WER ~ 0.4
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Thematic Indexing of Spoken Language
(with Sheffield, Cambridge, BBC)

ted
Sound content analysis  - Dan Ellis 2000-02-0

• SDR for BBC broadcast news archive
- 1000+ hr archive, automatically upda
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Speech and nonspeech
(with Gethin Williams)

el:
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Sound content analysis  - Dan Ellis 2000-02-0

• ASR run over entire soundtracks?
- for nonspeech, result is nonsense

• Watch behavior of speech acoustic mod
- average per-frame entropy
- ‘dynamism’ - mean-squared 1st-order

• 1.3% error on 2.5 second speech-music
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Element-based audio indexing

X libraries

..

gs

Results
Sound content analysis  - Dan Ellis 2000-02-0

• Search for nonspeech audio databases
- e.g. Muscle Fish ‘SoundFisher’ for SF

• Segment-level features

- well-performing features:
spectral centroid, dynamics, tonality .

• Each segment is an object
- not applicable to continuous recordin

Segment
feature
analysis

Sound segment
database

Segment
feature
analysis

Seach/
comparison

Query example

Feature vectors
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Object-based audio indexing

tch subsets

rties
armonicity)

Seach/
comparison

Results
Sound content analysis  - Dan Ellis 2000-02-0

• Using ‘generic sound elements’
- decompose sound into elements; ma
- how to generalize?
- how to use segment-style features?

• Form into objects for higher-order prope
- CASA-type object formation (onset, h

Generic
element
analysis

Continuous audio
archive

Generic
element
analysis

Query example

Element representations

Object
formation

(Object
formation)

Word-to-class
mapping

Objects + properties

Properties aloneSymbolic query
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Audio-video organization & retrieval

ogic

results
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Query
Sound content analysis  - Dan Ellis 2000-02-0

• How it might work...

audio

video

Audio-video
data anal
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AV indexing components

tition
ws

thematic
Sound content analysis  - Dan Ellis 2000-02-0

• Recovering broad temporal structure
- speaker turns ; speech & music ; repe
- characteristic of genres e.g. news sho
- indexible attributes in themselves

• Posing queries:
- term-based
- proximity to examples
- dynamic audio-visual sketches?

• How to define index/query terms?
- different kinds of terms: literal versus 
- machine learning of event classes

• Summarization
- for displaying ‘hits’: impacts usability
- text / image / video / sound
- tricks e.g. to find most salient words
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Open issues in audio indexing

(not WER)

ents

EG4SA)
s

Sound content analysis  - Dan Ellis 2000-02-0

• Information from speech
- multiple, confidence-tagged results? 
- prosodics; emphasis; speaking style
- speaker tracking, identity, character

• Information from nonspeech
- how to define objects
- how to match symbolic search terms

• Integrating audio and video
- combining information for search elem
- forms of query

• Related applications
- ‘structured content’ encoders (e.g. MP
- semantic hearing aids ; robot monitor
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Outline
Sound content analysis  - Dan Ellis 2000-02-0
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Conclusions:
s
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Sound content analysis  - Dan Ellis 2000-02-0

The state of sound content analysi

• Speech recognition:
- focussed application, practical results
- powerful statistical pattern recognition
- able to exploit large training sets

• Computational Auditory Scene Analysis
- real-world sounds are mixtures
- discover advanced ecological constra
- results still rather preliminary

• Content-based retrieval:
- compelling problem; forgiving applica
- leveraging audio-visual correlations
- fertile ground for research
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