Extracting Information from Music Audio

Dan Ellis

Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Engineering, Columbia University, NY USA

http://labrosa.ee.columbia.edu/

- Motivation: Learning Music
- Notes Extraction
- 3. Drum Pattern Modeling
- 4. Music Similarity

LabROSA Overview

Learning from Music

- A lot of music data available
 - e.g. 60G of MP3
 - ≈ 1000 hr of audio, 15k tracks
- What can we do with it?
 - o implicit definition of 'music'
- Quality vs. quantity
 - Speech recognition lesson:
 - 10x data, 1/10th annotation, twice as useful
- Motivating Applications
 - music similarity (recommendation, playlists)
 - o computer (assisted) music generation
 - o insight into music

Ground Truth Data

- A lot of unlabeled music data available
 - o manual annotation is expensive and rare

- Unsupervised structure discovery possible
 - o.. but labels help to indicate what you want
- Weak annotation sources
 - o artist-level descriptions
 - symbol sequences without timing (MIDI)
 - errorful transcripts
- Evaluation requires ground truth
 - limiting factor in Music IR evaluations?

2006-05-22

p. 4/35

Talk Roadmap

2. Notes Extraction

with Graham Poliner

- Audio → Score very desirable
 - o for data compression, searching, learning
- Full solution is elusive
 - o signal separation of overlapping voices
 - music constructed to frustrate!
- Maybe simplify problem:
 - "Dominant Melody" at each time frame

Conventional Transcription

- Pitched notes have harmonic spectra
 - → transcribe by searching for harmonics

o e.g. sinusoid modeling + grouping

Explicit expert-derived knowledge

Transcription as Classification

- Signal models typically used for transcription
 harmonic spectrum, superposition
- But ... trade domain knowledge for data
 - transcription as pure classification problem:

- o single N-way discrimination for "melody"
- o per-note classifiers for polyphonic transcription

Melody Transcription Features

 Short-time Fourier Transform Magnitude (Spectrogram)

Standardize over 50 pt frequency window

Music Information Extraction - Ellis

2006-05-22

p. 9/3

Training Data

- Need {data, label} pairs for classifier training
- Sources:
 - pre-mixing multitrack recordings + hand-labeling?
 - o synthetic music (MIDI) + forced-alignment?

Music Information Extraction - Ellis

2006-05-22

p. 10/35

Melody Transcription Results

- Trained on 17 examples
 - .. plus transpositions out to +/- 6 semitones
 - All-pairs SVMs (Weka)
- Tested on ISMIR MIREX 2005 set
 - o includes foreground/background detection

Rank	Participant	Overall Accuracy	Voicing d'	Raw Pitch	Raw Chroma	Runtime / s
1	Dressler	71.4%	1.85	68.1%	71.4%	32
2	Ryynänen	64.3%	1.56	68.6%	74.1%	10970
3	Poliner	61.1%	1.56	67.3%	(73.4%)	5471
3	Paiva 2	61.1%	1.22	58.5%	62.0%	45618
5	Marolt	59.5%	1.06	60.1%	67.1%	12461
6	Paiva 1	57.8%	0.83	62.7%	66.7%	44312
7	Goto	49.9%*	0.59*	65.8%	71.8%	211
8	Vincent 1	47.9%*	0.23*	59.8%	67.6%	?
9	Vincent 2	46.4%*	0.86*	59.6%	71.1%	251
10	Brossier	3.2%* †	0.14 * †	3.9% †	8.1% †	41

• Example...

Polyphonic Transcription

- Train SVM detectors for every piano note
 - o same features & classifier but different labels
 - 88 separate detectors, independent smoothing
- Use MIDI syntheses, player piano recordings

• about 30 min training data

Piano Transcription Results

- Significant improvement from classifier:
 - frame-level accuracy results:

Algorithm	Errs	False Pos	False Neg	d'
SVM	43.3%	27.9%	15.4%	3.44
Klapuri&Ryynänen	66.6%	28.1%	38.5%	2.71
Marolt	84.6%	36.5%	48.1%	2.35

• Breakdown by frame type:

o http://labrosa.ee.columbia.ed <u>/projects/melody/</u>

2006-05-22

p. 13/35

Melody Clustering

- Goal: Find 'fragments' that recur in melodies
 - o.. across large music database
 - .. trade data for model sophistication

- Data sources
 - o pitch tracker, or MIDI training data
- Melody fragment representation
 - o DCT(1:20) removes average, smoothes detail

Melody clustering results

Clusters match underlying contour:

Some interesting matches:

o e.g. Pink + Nsync

COLUMBIA UNIVERSITY

3. Eigenrhythms: Drum Pattern Space

with John Arroyo

- Pop songs built on repeating "drum loop"
 - o variations on a few bass, snare, hi-hat patterns

- Eigen-analysis (or ...) to capture variations?
 - by analyzing lots of (MIDI) data, or from audio
- Applications
 - music categorization
 - o "beat box" synthesis
 - o insight

Aligning the Data

Need to align patterns prior to modeling...

tempo (stretch): by inferring BPM & normalizing

downbeat (shift): correlate against 'mean' template

Music Information Extraction - Ellis

COLUMBIA UNIVERSITY

Eigenrhythms (PCA)

- Need 20+ Eigenvectors for good coverage of 100 training patterns (1200 dims)
- Eigenrhythms both add and subtract

Music Information Extraction - Ellis

COLUMBIA UNIVERSITY

Posirhythms (NMF)

- Nonnegative: only adds beat-weight
- Capturing some structure

Eigenrhythms for Classification

Projections in Eigenspace / LDA space

10-way Genre classification (nearest nbr):

o PCA3: 20% correct

LDA4: 36% correct

Eigenrhythm BeatBox

Resynthesize rhythms from eigen-space

4. Music Similarity

with Mike Mandel and Adam Berenzweig

- Can we predict which songs "sound alike" to a listener?
 - .. based on the audio waveforms?
 - many aspects to subjective similarity
- Applications
 - o query-by-example
 - automatic playlist generation
 - o discovering new music
- Problems
 - the right representation
 - modeling individual similarity

Music Similarity Features

Need "timbral" features: Mel-Frequency Cepstral Coeffs (MFCCs)

o auditory-like frequency warping

o log-domain

Spectrogram

Mel-frequency Spectrogram

discrete cosine transform

2006-05-22

p. 23/35

40

30

20

10

-10

Timbral Music Similarity

- Measure similarity of feature distribution
 - \circ i.e. collapse across time to get density $p(x_i)$
 - o compare by e.g. KL divergence
- e.g. Artist Identification
 - learn artist model $p(x_i \mid artist X)$ (e.g. as GMM)
 - o classify unknown song to closest model

"Anchor Space"

- Acoustic features describe each song
 - o.. but from a signal, not a perceptual, perspective
 - .. and not the differences between songs
- Use genre classifiers to define new space
 - o prototype genres are "anchors"

Laboratory for the Recognition and Organization of Speech and Audio

Anchor Space

Frame-by-frame high-level categorizations

o compare to raw features?

oproperties in distributions? dynamics?

Music Information Extraction - Ellis

p. 26/35

'Playola' Similarity Browser

Ground-truth data

- Hard to evaluate Playola's 'accuracy'
 - o user tests...
 - oground truth?
- "Musicseer" online survey:
 - oran for 9 months in 2002
 - > 1,000 users, > 20k judgments
 - http://labrosa.ee.columbia.edu/ projects/musicsim/

Which artist is most similar to: Janet Jackson?

- 1. R. Kelly
- 2. Paula Abdul
- 3. Aaliyah
- 4. Milli Vanilli
- 5. En Vogue
- 6. Kansas
- 7. Garbage
- 8. Pink
- 9. Christina Aguilera

Evaluation

- Compare Classifier measures against Musicseer subjective results
 - o "triplet" agreement percentage
 - Top-N ranking agreement score:

$$s_i = \sum_{r=1}^N \alpha_r^r \alpha_c^k$$

$$\alpha_r = \left(\frac{1}{2}\right)^r$$

- o "Average Dynamic Recall"? (Typke et al.)
- First-place agreement percentage
 - simple significance test

Music Information Extraction - Ellis

p. 29/35

Using SVMs for Artist ID

 Support Vector Machines (SVMs) find hyperplanes in a high-dimensional space

relies only on matrix of distances between points

- much 'smarter' than nearest-neighbor/overlap
- want diversity of reference vectors...

Song-Level SVM Artist ID

Instead of one model per artist/genre, use every training song as an 'anchor' othen SVM finds best support for each artist

Artist ID Results

- ISMIR/MIREX 2005 also evaluated Artist ID
- 148 artists, 1800 files (split train/test) from 'uspop2002'
- Song-level SVM clearly dominates
 using only MFCCs!

MIREX 05 Audio Artist (USPOP2002)

Rank	Participant	Raw Accuracy	Normalized	Runtime / s
1	Mandel	68.3%	68.0%	10240
2	Bergstra	59.9%	60.9%	86400
3	Pampalk	56.2%	56.0%	4321
4	West	41.0%	41.0%	26871
5	Tzanetakis	28.6%	28.5%	2443
6	Logan	14.8%	14.8%	?
7	Lidy	Did not complete		

Playlist Generation

- SVMs are well suited to "active learning"
 - o solicit labels on items closest to current boundary
- Automatic player with "skip"
 - = Ground truth data collection
 - active-SVM automatic playlist generation

```
Automatic Playlist Generator
                                                             00:00:30
Rate good on finish
seed
            play
                       pause
                                    repeat
                                                 good
                                                              bad
gabriel_peter / Secret_World_Live_Disk_1_ / Blood_Of_Eden
gabriel_peter / Secret_World_Live_Disk_1_ / Red_Rain
gabriel_peter / Secret_World_Live_Disk_1_ / Steam
springsteen_bruce / Live_1975-1985_disc_3 / Born_To_Run
paige_jennifer / Jennifer_Paige / Busted
blondie / Parallel_Lines / Picture_This
john_elton / Here_There_-_Disc_II_There_Live_at_Madison_Square
led_zeppelin / Led_Zeppelin_I / Babe_I_m_Gonna_Leave_You
depeche_mode / People_Are_People / Work_Hard
counting_crows / Across_A_Wire_-_VH1_Storytellers / Angels_of_th
matthews_dave_band / Live_at_Red_Rocks_8_15_95_Disc_1_ / TV
coldplay / Parachutes / Shiver
wonder_stevie / Songs_in_the_Key_of_Life_Disc_2_ / Ngiculela_-_E
 placeid union of souls / The Singles / Let Me Re The One
```


5. Artistic Application

 "Compositional" applications of automatic music analysis with Douglas Repetto, Ron Weiss, and the rest of the MEAP team

000	● ○ MEAPsoft							
	MEAP!	MEAP!	MEAP!	MEAP!	MEAP!			
	segmenter	feature extractor	composers	synthesizer	prefs/about			
	✓ ENABLE COMPOSERS							
input features file: chris_mann.wav.feat								
select a composer:	select a composer: 💿 simple sort 🔘 nearest neighbor 🔘 add blips 🔘 mashup! 🔘 MeapaeM 🔘 IntraChunkShuffle							
	Sorts the features in ascending or descending order. If there are multiple features, or more than one value per feature, it sorts according to distance in Euclidean space. SimpleSort Controls							
	O low to high • high to low							
Universal Chunk Operations								
reverse apply fade in/out crossfade								
fade length (ms): 0 10 20 30 40 50								
output edl file: chris_mann.wav.edl								
display composed features								
go!								

 music reformulation – automatic mashup generator

Conclusions

- Lots of data
 - + noisy transcription
 - + weak clustering
 - ⇒ musical insights?

