Extracting Information from Music Audio

Dan Ellis
Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Engineering, Columbia University, NY USA

http://labrosa.ee.columbia.edu/

1. Motivation: Learning Music
2. Notes Extraction
3. Drum Pattern Modeling
4. Music Similarity

LabROSA Overview

Learning from Music

- A lot of music data available o e.g. 60G of MP3 $\approx 1000 \mathrm{hr}$ of audio, 15 k tracks
- What can we do with it? o implicit definition of 'music'
- Quality vs. quantity
- Speech recognition lesson:
 I Ox data, I/ I Oth annotation, twice as useful
- Motivating Applications
o music similarity (recommendation, playlists)
o computer (assisted) music generation o insight into music

Ground Truth Data

- A lot of unlabeled music data available o manual annotation is expensive and rare
- Unsupervised structure discovery possible o .. but labels help to indicate what you want
- Weak annotation sources
- artist-level descriptions
o symbol sequences without timing (MIDI)
o errorful transcripts
- Evaluation requires ground truth - limiting factor in Music IR evaluations?

Talk Roadmap

Notes Extraction

- Audio \rightarrow Score very desirable
o for data compression, searching, learning
- Full solution is elusive
o signal separation of overlapping voices
o music constructed to frustrate!
- Maybe simplify problem:
"Dominant Melody" at each time frame

Lab

Conventional Transcription

- Pitched notes have harmonic spectra \rightarrow transcribe by searching for harmonics o e.g. sinusoid modeling + grouping

- Explicit expert-derived knowledge

Transcription as Classification

- Signal models typically used for transcription o harmonic spectrum, superposition
- But ... trade domain knowledge for data o transcription as pure classification problem:

o single N -way discrimination for "melody" o per-note classifiers for polyphonic transcription

Melody Transcription Features

- Short-time Fourier Transform Magnitude (Spectrogram)

Lab • Standardize over 50 pt frequency window
Music Information Extraction - Ellis
p. 9/35

Training Data

- Need \{data, label\} pairs for classifier training - Sources:
o pre-mixing multitrack recordings + hand-labeling? o synthetic music (MIDI) + forced-alignment?

Melody Transcription Results

- Trained on 17 examples
- .. plus transpositions out to +/- 6 semitones - All-pairs SVMs (Weka)
- Tested on ISMIR MIREX 2005 set
o includes foreground/background detection

Rank	Participant	Overall Accuracy	Voicing d^{\prime}	Raw Pitch	Raw Chroma	Runtime $/ \mathbf{s}$
1	Dressler	$\mathbf{7 1 . 4 \%}$	$\mathbf{1 . 8 5}$	68.1%	71.4%	32
2	Ryynänen	64.3%	1.56	68.6%	$\mathbf{7 4 . 1 \%} \%$	10970
3	Poliner	61.1%	1.56	67.3%	73.4%	5471
3	Paiva 2	61.1%	1.22	50.5%	62.0%	45618
5	Marolt	59.5%	1.06	60.1%	67.1%	12461
6	Paiva 1	57.8%	0.83	62.7%	66.7%	44312
7	Goto	$49.9 \%^{*}$	0.59^{*}	65.8%	71.8%	211
8	Vincent 1	$47.9 \%^{*}$	0.23^{*}	59.8%	67.6%	$?$
9	Vincent 2	$46.4 \%^{*}$	0.86^{*}	59.6%	71.1%	251
10	Brossier	$3.2 \%^{*} \dagger$	$0.14^{*} \dagger$	$3.9 \% \dagger$	$8.1 \% \dagger$	41

o Example...
Lab

Polyphonic Transcription

- Train SVM detectors for every piano note o same features \& classifier but different labels - 88 separate detectors, independent smoothing
- Use MIDI syntheses, player piano recordings

o about 30 min training data

Piano Transcription Results

- Significant improvement from classifier:
o frame-level accuracy results:

Algorithm	Errs	False Pos	False Neg	d^{\prime}
SVM	43.3%	27.9%	15.4%	3.44
Klapuri\&Ryynänen	66.6%	28.1%	38.5%	2.71
Marolt	84.6%	36.5%	48.1%	2.35

o Breakdown by frame type:

Lab O http://labrosa.ee.columbia.edu/projects/melody/

Melody Clustering

- Goal: Find 'fragments' that recur in melodies
- .. across large music database
- .. trade data for model sophistication

- Data sources
o pitch tracker, or MIDI training data
- Melody fragment representation
o DCT ($1: 20$) - removes average, smoothes detail

Melody clustering results

- Clusters match underlying contour:

- Some interesting matches:
o e.g. Pink + Nsync

Lab

Eigenrhythms: Drum Pattern Space

- Pop songs built on repeating "drum loop"
o variations on a few bass, snare, hi-hat patterns

- Eigen-analysis (or ...) to capture variations? o by analyzing lots of (MIDI) data, or from audio
- Applications
- music categorization
o "beat box" synthesis
Lab o insight

Aligning the Data

- Need to align patterns prior to modeling...

tempo (stretch):
by inferring BPM \& normalizing

Original pattern compressed $98 \rightarrow 120$ BPM
downbeat (shift): correlate against 'mean' template

Eigenrhythms (PCA)

Mean pattern

Eigenrhythm 2

Eigenrhythm 4

Eigenrhythm 1

Eigenrhythm 3

Eigenrhythm 5

- Need 20+ Eigenvectors for good coverage of 100 training patterns (1200 dims)
- Eigenrhythms both add and subtract

Lab

Posirhythms (NMF)

Posirhythm 1

Posirhythm 3

Posirhythm 5

- Nonnegative: only adds beat-weight
- Capturing some structure

Lab

Laboratory for the Recognition and
Organization of Speech and Audio

Eigenrhythms for Classification

- Projections in Eigenspace / LDA space

o PCA3: 20\% correct
Lab o LDA4: 36\% correct

Eigenrhythm BeatBox

- Resynthesize rhythms from eigen-space

Music Similarity

- Can we predict which songs "sound alike" to a listener?
- .. based on the audio waveforms?
o many aspects to subjective similarity
- Applications
o query-by-example
o automatic playlist generation
o discovering new music
- Problems
o the right representation
o modeling individual similarity

Music Similarity Features

- Need "timbral" features:

Mel-Frequency Cepstral Coeffs (MFCCs)

o auditory-like frequency warping
o log-domain

- discrete cosine transform orthogonalization

Mel-frequency Spectrogram

Mel-Frequency Cepstral Coefficients

level / dB

Timbral Music Similarity

- Measure similarity of feature distribution o i.e. collapse across time to get density $p\left(x_{i}\right)$ o compare by e.g. KL divergence
- e.g.Artist Identification
- learn artist model $p\left(x_{i} \mid \operatorname{artist} X\right)$ (e.g. as GMM) o classify unknown song to closest model

"Anchor Space"

- Acoustic features describe each song
o .. but from a signal, not a perceptual, perspective o .. and not the differences between songs
- Use genre classifiers to define new space o prototype genres are "anchors"

Anchor Space

- Frame-by-frame high-level categorizations
o compare to raw features?

o properties in distributions? dynamics?

‘Playola’ Similarity Browser

Get selections: 20 songs $-\mid$ recently heard - Go! Browse: Artists Albums Playlists Range: 0 - \quad -
Artist: Beatles [band web page] [Play!] Playlist: - New Playlist- \quad [Add to] [View]

Ground-truth data

- Hard to evaluate Playola’s 'accuracy’
o user tests...
○ ground truth?
- "Musicseer" online survey: o ran for 9 months in 2002 o > I,000 users, > 20k judgments - http://labrosa.ee.columbia.edu/ projects/musicsim/

Which artist is most similar to: Janet Jackson?

1. R. Kelly
2. Paula Abdul
3. Aaliyah
4. Mill Vanilli
5. En Vogue
6. Kansas
7. Garbage
8. Pink
9. Christina Aguilera

Evaluation

- Compare Classifier measures against Musicseer subjective results
o "triplet" agreement percentage
- Top-N ranking agreement score: $s_{i}=\sum_{r=1}^{N} \alpha_{r}^{r} \alpha_{c}^{k_{r}}$
o "Average Dynamic Recall" ?(Typke et al.)

$$
\begin{gathered}
\alpha_{r}=\left(\frac{1}{2}\right)^{\frac{1}{3}} \\
\alpha_{c}=\alpha_{r}^{2}
\end{gathered}
$$

o First-place agreement percentage

- simple significance test

Using SVMs for Artist ID

- Support Vector Machines (SVMs) find hyperplanes in a high-dimensional space
o relies only on matrix of distances between points o much 'smarter' than nearest-neighbor/overlap
o want diversity of reference vectors...

Song-Level SVM Artist ID

- Instead of one model per artist/genre, use every training song as an 'anchor'
o then SVM finds best support for each artist

Lab

Artist ID Results

- ISMIR/MIREX 2005 also evaluated Artist ID
- I48 artists, 1800 files (split train/test) from 'uspop2002'
- Song-level SVM clearly dominates o using only MFCCs!

MIREX 05 Audio Artist (USPOP2002)

Rank	Participant	Raw Accuracy	Normalized	Runtime / s
1	Mandel	$\mathbf{6 8 . 3 \%}$	$\mathbf{6 8 . 0 \%}$	10240
2	Bergstra	59.9%	60.9%	86400
3	Pampalk	56.2%	56.0%	4321
4	West	41.0%	41.0%	26871
5	Tzanetakis	28.6%	28.5%	2443
6	Logan	14.8%	14.8%	$?$
7	Lidy	Did not complete		

Playlist Generation

- SVMs are well suited to "active learning"
o solicit labels on items closest to current boundary
- Automatic player with "skip"
= Ground truth data collection
o active-SVM
automatic playlist
generation

5. Artistic Application

- "Compositional" applications of automatic music analysis

Conclusions

- Lots of data
+ noisy transcription
+ weak clustering
\Rightarrow musical insights?

