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Auditory Scene Analysis

 

•

 

Auditory Scene Analysis

 

: describing a complex 
sound in terms of high-level sources/events

 

- ... like listeners do

 

• Hearing is 

 

ecologically

 

 grounded

 

- reflects ‘natural scene’ properties
- subjective, not absolute
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Sound, mixtures, and learning

 

• Sound

 

- carries useful information about the world
- complements vision

 

• Mixtures

 

- .. are the rule, not the exception
- medium is ‘transparent’, sources are many
- must be handled!

 

• Learning

 

- the ‘speech recognition’ lesson:
let the data do the work

- like listeners
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The problem with recognizing mixtures

 

“Imagine two narrow channels dug up from the edge of a 
lake, with handkerchiefs stretched across each one.  
Looking only at the motion of the handkerchiefs, you are 
to answer questions such as: How many boats are there 
on the lake and where are they?”   

 

(after Bregman’90)

 

• Received waveform is a mixture

 

- two sensors, N signals ... 

 

underconstrained

 

• Disentangling mixtures as the primary goal?

 

- perfect solution is not possible
- need experience-based 

 

constraints
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Human Auditory Scene Analysis

 

 
(Bregman 1990)

• How do people analyze sound mixtures?

 

- break mixture into small 

 

elements

 

 (in time-freq)
- elements are 

 

grouped

 

 in to sources using 

 

cues

 

- sources have aggregate 

 

attributes

 

• Grouping ‘rules’ (Darwin, Carlyon, ...):

 

- cues: common onset/offset/modulation, 
harmonicity, spatial location, ...
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Cues to simultaneous grouping

 

• Elements + attributes

• Common onset

 

- simultaneous energy has common source

 

• Periodicity

 

- energy in different bands with same cycle

 

• Other cues

 

- spatial (ITD/IID), familiarity, ...
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The effect of context

 

• Context can create an ‘expectation’: 
i.e. a bias towards a particular interpretation

• e.g. Bregman’s “old-plus-new” principle:

 

A change in a signal will be interpreted as an 

 

added

 

 source whenever possible

- a different division of the same energy 
depending on what preceded it
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Computational Auditory Scene Analysis
(CASA)

 

• Goal: Automatic sound organization ;
Systems to ‘pick out’ sounds in a mixture

 

- ... like people do

 

• E.g. voice against a noisy background

 

- to improve speech recognition

 

• Approach:

 

- psychoacoustics describes grouping ‘rules’
- ... just implement them?

CASA
Object 1 description
Object 2 description
Object 3 description
...
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The Representational Approach

 

(Brown & Cooke 1993)

 

• Implement psychoacoustic theory

 

- ‘bottom-up’ processing
- uses common onset & periodicity cues

 

• Able to extract voiced speech:
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Restoration in sound perception

 

• Auditory ‘illusions’ = hearing what’s not there

• The continuity illusion

• SWS

 

- duplex perception

 

• How to model in CASA?
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Adding top-down constraints

 

Perception is not 

 

direct

 

but a 

 

search

 

 for 

 

plausible hypotheses

 

• Data-driven (bottom-up)...

 

- objects irresistibly appear

 

vs. Prediction-driven (top-down)

 

- match observations 
with parameters of a world-model

- need world-model constraints...
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Prediction-Driven CASA

 

(Ellis 1996)

 

• Explain a complex sound with basic elements
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Approaches to sound mixture recognition

 

• Recognize combined signal

 

- ‘multicondition training’
- combinatorics..

 

• Separate signals

 

- e.g. CASA, ICA
- nice, if you can do it

 

• Segregate features into fragments

 

- then missing-data recognition



 

Sound, mixtures, learning - Dan Ellis 2003-03-20 - 14/33

 

Aside: Evaluation

 

• Evaluation is a big problem for CASA

 

- what is the goal, really?
- what is a good test domain?
- how do you measure performance?

 

• SNR improvement

 

- not easy given only before-after signals:
correspondence problem

- can do with fixed filtering mask; 
rewards removing signal as well as noise

 

• ASR improvement

 

- recognizers typically very sensitive to artefacts

 

• ‘Real’ task?

 

- mixture corpus with specific sound events...
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Outline
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The information in speech

 

(Patricia Scanlon)

 

• Mutual Information 
identifies where the 
information is in time/
frequency:

 

- little temporal 
structure averaged 
over all sounds

 

- Better with just 

 

vowels:
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The best subword units?
(Eric Fosler)

• Speech recognizers typically use phonemes
- inherited from linguistics

• Alternative approach is ‘articulatory features’
- orthogonal attributes defining subwords

• Can we infer a feature set from the data
- using e.g. Independent Component Analysis
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The Meeting Recorder Project
(CompSci, ICSI, UW, IDIAP, SRI, IBM)

• Microphones in conventional meetings
- for summarization/retrieval/behavior analysis
- informal, overlapped speech

• Data collection (ICSI, UW, IDIAP):

- 100 hours collected, ongoing transcription

• NSF ‘Mapping Meetings’ project
- also interest from NIST, DARPA, EU
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Speaker Turn detection
(Huan Wei Hee, Jerry Liu)

• Acoustic: 
Triangulate tabletop mic timing differences
- use normalized peak value for confidence

• Behavioral: Look for patterns of speaker turns
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Speech Fragment recognition
(Barker & Cooke/Sheffield)

• Standard classification chooses between 
models M to match source features X

• Mixtures → observed features Y, segregation S, 
all related by 

- spectral features allow clean relationship

• Joint classification of model and segregation:

M∗ P M X( )
M

argmax P X M( )
P M( )
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Multi-source decoding

• Search for more than one source

• Mutually-dependent data masks

• Use e.g. CASA features to propose masks
- locally coherent regions

• Theoretical vs. practical limits
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Outline
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Speech Recognition & Mixtures
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- musical structure analysis
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Music Structure Analysis
(Alex Sheh)

• Fine-level information from music
- for searching
- for modeling/statistics

• e.g. Chord sequences via PCPs :

3
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Ground truth for Music Recordings
(Rob Turetsky)

• Machine Learning algorithms need labels
- but real recordings don’t have labels

• MIDI ‘replicas’ exist

• Alignment locates MIDI notes in real sound:
"Don't you want me" (Human League), verse1
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Music Similarity Browsing
(Adam Berenzweig)

• ‘Anchor models’ : music on subjective axes
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Outline
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Alarm sound detection

• Alarm sounds have particular structure
- people ‘know them when they hear them’

• Isolate alarms in sound mixtures

- sinusoid peaks have invariant properties

- cepstral coefficients are easy to model
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Sound Texture Modeling
(Marios Athineos)

• Best sound models are based on sinusoids
- noise residual modeled quite simply

• Noise ‘textures’ have extra temporal structure
- need a more detailed model

• Linear prediction of spectrum defines a 
parametric temporal envelope:

• High-quality noise-excited resynthesis:
- original  -  resynth   -   x2 TSM   -  c/w PVOC

0.65 0.7 0.75 0.8 0.85 0.9
-0.05

0

0.05

0.1

mpgr1-sx419: TDLPC env (60 poles / 300 ms)



Sound, mixtures, learning - Dan Ellis 2003-03-20 - 29/33

Sound mixture decomposition
(Manuel Reyes)

• Full or approximate Bayesian inference to 
model multiple, independent sound sources:
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Outline
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Future work:
Automatic audio-video analysis

(Shih-Fu Chang, Kathy McKeown)

• Documentary archive management
- huge ratio of raw-to-finished material
- costly manual logging

• Problem: term ↔↔↔↔ signal mapping
- training corpus of past annotations
- interactive semi-automatic learning
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The ‘Listening Machine’

• Smart PDA records everything

• Only useful if we have index, summaries
- monitor for particular sounds
- real-time description

• Scenarios

- personal listener → summary of your day
- future prosthetic hearing device
- autonomous robots

• Meeting data, ambulatory audio
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LabROSA Summary

D
O

M
A

IN
S

A
P

P
LI

C
A

T
IO

N
S

ROSA

•  Broadcast
•  Movies
•  Lectures

•  Meetings
•  Personal recordings
•  Location monitoring

•  Speech recognition
•  Speech characterization
•  Nonspeech recognition

• Object-based structure discovery & learning

•  Scene analysis
•  Audio-visual integration
•  Music analysis

•  Structuring
•  Search
•  Summarization
•  Awareness
•  Understanding
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