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LabROSA : Machine Listening
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• Extracting useful information from sound
... like (we) animals do
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1. Motivation:  
What is music?

• What does music evoke 
in a listener’s mind?

• Which are the things that we  
call “music”?
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Oodles of Music

• What can you do with a million tracks?

Bertin-Mahieux et al. ’09
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Re-use in Music

• What are the most popular 
chord progressions 
in pop music?
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points towards a great degree of conventionalism in the creation
and production of this type of music. Yet, we find three important
trends in the evolution of musical discourse: the restriction of pitch
sequences (with metrics showing less variety in pitch progressions),
the homogenization of the timbral palette (with frequent timbres
becoming more frequent), and growing average loudness levels
(threatening a dynamic richness that has been conserved until
today). This suggests that our perception of the new would be essen-
tially rooted on identifying simpler pitch sequences, fashionable tim-
bral mixtures, and louder volumes. Hence, an old tune with slightly
simpler chord progressions, new instrument sonorities that were in
agreement with current tendencies, and recorded with modern tech-
niques that allowed for increased loudness levels could be easily
perceived as novel, fashionable, and groundbreaking.

Results
To identify structural patterns of musical discourse we first need to
build a ‘vocabulary’ of musical elements (Fig. 1). To do so, we encode
the dataset descriptions by a discretization of their values, yielding
what we call music codewords20 (see Supplementary Information, SI).
In the case of pitch, the descriptions of each song are additionally
transposed to an equivalent main tonality, such that all of them are
automatically considered within the same tonal context or key. Next,

to quantify long-term variations of a vocabulary, we need to obtain
samples of it at different periods of time. For that we perform a
Monte Carlo sampling in a moving window fashion. In particular,
for each year, we sample one million beat-consecutive codewords,
considering entire tracks and using a window length of 5 years (the
window is centered at the corresponding year such that, for instance,
for 1994 we sample one million consecutive beats by choosing full
tracks whose year annotation is between 1992 and 1996, both
included). This procedure, which is repeated 10 times, guarantees a
representative sample with a smooth evolution over the years.

We first count the frequency of usage of pitch codewords (i.e. the
number of times each codeword type appears in a sample). We
observe that most used pitch codewords generally correspond to
well-known harmonic items21, while unused codewords correspond
to strange/dissonant pitch combinations (Fig. 2a). Sorting the fre-
quency counts in decreasing order provides a very clear pattern
behind the data: a power law17 of the form z / r2a, where z corre-
sponds to the frequency count of a codeword, r denotes its rank (i.e. r
5 1 for the most used codeword and so forth), and a is the power law
exponent. Specifically, we find that the distribution of codeword
frequencies for a given year nicely fits to P(z) / (c 1 z) 2b for z .
zmin, where we take z as the random variable22, b 5 1 1 1/a as the
exponent, and c as a constant (Fig. 2b). A power law indicates that
a few codewords are very frequent while the majority are highly

Figure 1 | Method schematic summary with pitch data. The dataset contains the beat-based music descriptions of the audio rendition of a musical piece
or score (G, Em, and D7 on the top of the staff denote chords). For pitch, these descriptions reflect the harmonic content of the piece15, and encapsulate all
sounding notes of a given time interval into a compact representation11,12, independently of their articulation (they consist of the 12 pitch class relative
energies, where a pitch class is the set of all pitches that are a whole number of octaves apart, e.g. notes C1, C2, and C3 all collapse to pitch class C). All
descriptions are encoded into music codewords, using a binary discretization in the case of pitch. Codewords are then used to perform frequency counts,
and as nodes of a complex network whose links reflect transitions between subsequent codewords.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 521 | DOI: 10.1038/srep00521 2
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niques that allowed for increased loudness levels could be easily
perceived as novel, fashionable, and groundbreaking.

Results
To identify structural patterns of musical discourse we first need to
build a ‘vocabulary’ of musical elements (Fig. 1). To do so, we encode
the dataset descriptions by a discretization of their values, yielding
what we call music codewords20 (see Supplementary Information, SI).
In the case of pitch, the descriptions of each song are additionally
transposed to an equivalent main tonality, such that all of them are
automatically considered within the same tonal context or key. Next,
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Monte Carlo sampling in a moving window fashion. In particular,
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considering entire tracks and using a window length of 5 years (the
window is centered at the corresponding year such that, for instance,
for 1994 we sample one million consecutive beats by choosing full
tracks whose year annotation is between 1992 and 1996, both
included). This procedure, which is repeated 10 times, guarantees a
representative sample with a smooth evolution over the years.

We first count the frequency of usage of pitch codewords (i.e. the
number of times each codeword type appears in a sample). We
observe that most used pitch codewords generally correspond to
well-known harmonic items21, while unused codewords correspond
to strange/dissonant pitch combinations (Fig. 2a). Sorting the fre-
quency counts in decreasing order provides a very clear pattern
behind the data: a power law17 of the form z / r2a, where z corre-
sponds to the frequency count of a codeword, r denotes its rank (i.e. r
5 1 for the most used codeword and so forth), and a is the power law
exponent. Specifically, we find that the distribution of codeword
frequencies for a given year nicely fits to P(z) / (c 1 z) 2b for z .
zmin, where we take z as the random variable22, b 5 1 1 1/a as the
exponent, and c as a constant (Fig. 2b). A power law indicates that
a few codewords are very frequent while the majority are highly

Figure 1 | Method schematic summary with pitch data. The dataset contains the beat-based music descriptions of the audio rendition of a musical piece
or score (G, Em, and D7 on the top of the staff denote chords). For pitch, these descriptions reflect the harmonic content of the piece15, and encapsulate all
sounding notes of a given time interval into a compact representation11,12, independently of their articulation (they consist of the 12 pitch class relative
energies, where a pitch class is the set of all pitches that are a whole number of octaves apart, e.g. notes C1, C2, and C3 all collapse to pitch class C). All
descriptions are encoded into music codewords, using a binary discretization in the case of pitch. Codewords are then used to perform frequency counts,
and as nodes of a complex network whose links reflect transitions between subsequent codewords.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 521 | DOI: 10.1038/srep00521 2

Serrà et al. 2012
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Potential Applications

• Compression

• Classification

• Manipulation

6
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2.  Eigenrhythms: 
Drum Track Structure

• To first order, 
all pop music has the same beat:

• Can we learn this from examples?

Ellis & Arroyo ’04
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Basis Sets

• Combine a few basic patterns
to make a larger dataset

X       =     W      ×       Hdata
weights

patterns
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Drum Pattern Data

• Tempo normalization + downbeat alignment

9
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NMF Eigenrhythms

• Nonnegative: only add beat-weight
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Eigenrhythm BeatBox
• Resynthesize rhythms from eigen-space

11
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3.  Melodic-Harmonic Fragments

• How similar are two pieces?

• Can we find all the 
pop-music clichés?
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MFCC Features
• Used in speech recognition
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Chroma Features
• Idea: 

Project onto 12 semitones
regardless of octave

14

Fujishima 1999
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Chroma Features
• To capture “musical” content
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Let It Be - log-freq specgram (LIB-1)
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Let It Be - log-freq specgram (LIB-1)

Onset envelope + beat times

Beat-synchronous chroma

Beat-synchronous chroma + Shepard resynthesis (LIB-6)
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Beat-Synchronous Chroma
• Compact representation of harmonies

16
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Chord Recognition
• Beat synchronous chroma look like chords

can we transcribe them?

• Two approaches
manual templates 
(prior knowledge)
learned models 
(from training data)
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Chord Recognition System
• Analogous to speech recognition

Gaussian models of features for each chord
Hidden Markov Models for chord transitions
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Chord Recognition
• Often works:

• But only 60-80% 
of the time
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• Chord model centers (means) 
indicate chord ‘templates’:

What did the models learn?
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Finding ‘Cover Songs’

• Little similarity in surface audio...

• .. but appears in beat-chroma

21
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Large-Scale Cover Recognition

• 2D Fourier Transform 
Magnitude (2DFTM)
fixed-size feature 
to capture “essence” 
of chromagram: 

• First results on finding covers in 1M songs

22

Average rank meanAP

random 500,000 0.000

jumpcodes 2 308,369 0.002

2DFTM (50 PC) 137,117 0.020

Bertin-Mahieux & Ellis ’12
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Finding Common Fragments

• Cluster beat-synchronous chroma patches
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Clustered Fragments

• ... for a dictionary of common themes?
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4. Example Applications:
Music Discovery

• Connecting 
listeners 
to musicians

25

Berenzweig & Ellis ‘03
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Playlist Generation

• Incremental learning of listeners’ preferences

26

Mandel, Poliner, Ellis ‘06
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MajorMiner: Music Tagging
• Describe music using words

27

Mandel & Ellis ’07,‘08
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Classification Results
• Classifiers trained from top 50 tags

28

 

 

40 80 120 160 200 240 280 320
drumguitarmalesynthrockelectronicpopvocalbassfemaledancetechnopianojazzhip_hoprapslowbeatvoice80selectronicainstrumentalfastsaxophonekeyboardcountrydrum_machinedistortionbritishambientsoftfunkr_balternativehouseindiestringssolonoisequietsilencesamplespunkhornssingingdrum_bassendtranceclub_90s

320
−2

−1.5

−1

−0.5

0

0.5

1

1.5

01 Soul Eyes

50 100 150 200 250 300

time / s

fre
q 

/ H
z

135
240
427
761

1356
2416



Data-Driven Music Understanding - Dan Ellis 2013-05-15       /3129

Music Transcription Poliner & Ellis 
‘05,’06,’07

Classification:

•N-binary SVMs (one for ea. note).

•Independent frame-level

classification on 10 ms grid.

•Dist. to class bndy as posterior.

classification posteriors

Temporal Smoothing:

•Two state (on/off) independent

HMM for ea. note.  Parameters 

learned from training data.

•Find Viterbi sequence for ea. note.

hmm smoothing

Training data and features:

•MIDI, multi-track recordings, 
playback piano, & resampled audio

(less than 28 mins of train audio). 
•Normalized magnitude STFT.

feature representation feature vector
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MEAPsoft
• Music Engineering Art Projects

collaboration between EE 
and Computer Music Center

30

with Douglas Repetto, 
Ron Weiss, and the rest

of the MEAP team
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Conclusions

• Lots of data 
+ noisy transcription 
+ weak clustering
⇒ musical insights?
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