Clap Detection and Discrimination for Rhythm Therapy

Nathan Lesser & Dan Ellis Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Engineering, Columbia University, NY USA

{nathan,dpwe}@ee.columbia.edu

- I. "Rhythm Therapy"
- 2. Clap Range Estimation
- 3. Experiments
- 4. Conclusions

I. "Rhythm Therapy"

- Rhythmic clapping may help neural development
 - sensori-motor planning
 - focus and attention
- "Interactive metronome" devices
 - o give feedback on synchrony
 - o sensor-based
- Classroom deployment?
 - o acoustic-based?

• for multiple simultaneous users??

2005-03-22 р. 2/14

Clap Discrimination

- Scenario: Many students in same classroom each clapping in time to their own laptop
 - students wear headphones (but no sensor)
 - o computer hears neighbors
- Goal:
 - Discriminate between 'near-field' and 'far-field' claps
 - 'near-field' = \sim | meter, on-axis
 - 'far-field' = > 2 meters, maybe off-axis

Data Collection

• Record isolated claps at various locations

o can superimpose them later...

• Grid of seats:

- claps from locations 0..9
- record at locations 5 & 9 only

• Multiple rooms

- pilot: I room,
 2 x 5 claps/location
- main data: 2 (+2) rooms,
 I × 50 farfield claps/location
 + 300 nearfield claps/rec.loc.
 = 1500 claps/room

2. Clap Range Estimation

- Task:
 - Discriminate claps from in front of rig from all others (more distant)
 - main perceptual cue to distance (range): direct-to-reverberant ratio (DRR)
 - how to differentiate direct and reverb?
- Novel problem: Acoustic range estimation
 - define correlates of DRR
 - exploit properties of claps (wideband, compact)
 - o .. then just feed to classifier

Processing

• Detection \rightarrow Features \rightarrow Classifier

COLUMBIA UNIVERSITY

Clap Detection

- Simple transient detector limits feature calculation to 'clap events'
- Adjust threshold on $\Delta(\text{Energy}_{20ms})$ to get desired number of claps

o known for our data

- Backup from maxima to find precise onset
 - Fielded system will need to adapt threshold and reject non-claps

2005-03-22 р. 8/14

Range Features

• Paper: Ctr. of Mass, Slope in 0..20, 0..100ms

New: Slope in 0..20ms , 20..100ms
 + Energy Ratio 0..20ms / 20..100ms

COLUMBIA UNIVERSITY

Range Feature Behavior

- Original 4 features
 - good separation except CoM₂₀
- New features
 - Eratio excellent
 - o slope_{20:100} useless...
- Range estimation?
 - CoM₂₀, slope₂₀ show promise

(each plot shows 4-8 kHz band vs. 2-4 kHz band)

Clap Detection - Lesser & Ellis

2005-03-22 р. 10/14

3. Experiments

- Build and test actual near/far-field classifier
- Feature experiments
 - quantitative feature comparison
 - best combinations
- Data experiments
 - o training data: amount, locations
 - test data: same/different room/location

• Regularized Least-Squares Classifier (RLSC)

o find a hyperplane in (expanded) feature space

• ~ simplified Support Vector Machine - no QP

Feature Comparisons

Train on room 327Mudd; Test on 627Mudd

• Eratio alone (9/1500 = 0.6% errors) beats best combination of rest: $(CoM_{20} + CoM_{100} + slo_{20} = 0.9\% \text{ errors})$

difference of ~0.5% required for signficance

Clap Detection - Lesser & Ellis

2005-03-22 р. 12/14

Generalizing Location, Room

• Matrix of 2 rooms x 2 recording locations

CER%		Test			
		M627L5	M627L9	M327L5	M327L9
Train	M627L5	2.0	0.5	0.4	0.0
	M627L9	3.7	0.4	0.7	0.0
	M327L5	1.5	0.5	0.4	0.0
	M327L9	0.1	0.7	0.4	0.0

- 627Mudd loc5 is hard data; 327Mudd loc9 is easy!
- Cross-room (shaded) cases generalize better !?
- Plenty of data: 5 claps/loc (20%) just as good

4. Conclusions

- Discriminating isolated near- and far-field claps is feasible (use Eratio 0..20/20..100ms)
- Detection of candidate claps likely to limit accuracy in practice

• but have 'rhythmic' expectations...

- Applicability to general range estimation?
 - Eratio relies on short-duration direct-sound
 - o ...but other sounds have clicks (e.g. speech bursts)
 - CoM₂₀, slope₂₀ closer to proportional to range

2005-03-22 р. 14/14

Azimuth Features

• Cross-correlation of L and R for azimuth:

• nearby locations distinguished - useful

- o distant locations (p2) give random results
- needs nonlinear feature space expansion!

Error Analysis

• 627Mudd (record loc 5) is the tough set; look at classifier margins: *a few solid*

Usefulness of Each Position

 Train on 50 near-field claps + 50 far-field claps from a single location:

- all recorded at location 5
- o 'behind' (p7-p9) less useful
- o right-side (p3, p6) most useful !?

Clap Detection - Lesser & Ellis

2005-03-22 р. 17/14

