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The Problem of Mixtures

“Imagine two narrow channels dug up from the edge of a 
lake, with handkerchiefs stretched across each one.  
Looking only at the motion of the handkerchiefs, you are 
to answer questions such as: How many boats are there 
on the lake and where are they?”   (after Bregman’90) 
• Received waveform is a mixture

2 sensors, N sources - underconstrained

• Undoing mixtures: hearing’s primary goal?
.. by any means available
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Sound Organization Scenarios
• Interactive voice systems

human-level understanding is expected

• Speech prostheses
crowds: #1 complaint of hearing aid users

• Archive analysis
identifying and isolating sound events

• Unmixing/remixing/enhancement...
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How Can We Separate?
• By between-sensor differences (spatial cues)

‘steer a null’ onto a compact interfering source
the filtering/signal processing paradigm

• By finding a ‘separable representation’
spectral?  sources are broadband but sparse
periodicity?  maybe – for pitched sounds
something more signal-specific...

• By inference (based on knowledge/models)
acoustic sources are redundant
→ use part to guess the remainder
- limited possible solutions
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combination physics source models

Separation vs. Inference
• Ideal separation is rarely possible

i.e. no projection can completely remove overlaps

• Overlaps → Ambiguity
scene analysis = find “most reasonable” explanation

• Ambiguity can be expressed probabilistically
i.e. posteriors of sources {Si} given observations X:

P({Si}| X) ∝ P(X |{Si}) P({Si})

• Better source models → better inference

.. learn from examples?
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A Simple Example
• Source models are codebooks

from separate subspaces

6














      






















     









     





















 















Sound Source Models - Dan Ellis 2007-05-24 -    /30

A Slightly Less Simple Example
• Sources with Markov transitions
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What is a Source Model?
• Source Model describes signal behavior

encapsulates constraints on form of signal
(any such constraint can be seen as a model...)

• A model has parameters
model + parameters 
→ instance

• What is not a source model?
detail not provided in instance
e.g. using phase from original mixture
constraints on interaction between sources
e.g. independence, clustering attributes
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Outline
1.  Mixtures and Models
2.  Human Sound Organization

Auditory Scene Analysis
Using source characteristics
Illusions

3.  Machine Sound Organization
4.  Ambient Sounds
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Auditory Scene Analysis

• How do people analyze sound mixtures? 
break mixture into small elements (in time-freq) 
elements are grouped in to sources using cues 
sources have aggregate attributes 

• Grouping rules (Darwin, Carlyon, ...): 
cues: common onset/modulation, harmonicity, ...

• Also learned “schema” (for speech etc.)
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Perceiving Sources
• Harmonics distinct in ear, but perceived as 

one source (“fused”):

depends on common onset
depends on harmonics

• Experimental techniques
ask subjects “how many”
match attributes e.g. pitch, vowel identity
brain recordings (EEG “mismatch negativity”)
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Auditory “Illusions”
• How do we explain illusions?

pulsation threshold

sinewave speech

phonemic restoration

• Something is providing the 
missing (illusory) pieces ... source models
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Human Speech Separation
• Task: Coordinate Response Measure

“Ready Baron go to green eight now”
256 variants, 16 speakers
correct = color and number for “Baron”

• Accuracy as a function of spatial separation:

A, B same speaker                  o Range effect
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Separation by Vocal Differences
• CRM varying the level and voice character

energetic vs. informational masking
more than pitch .. source models
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Outline
1.  Mixtures and Models
2.  Human Sound Organization
3.  Machine Sound Organization

Computational Auditory Scene Analysis
Dictionary Source Models

4.  Ambient Sounds
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Source Model Issues
• Domain

parsimonious expression of constraints
nice combination physics

• Tractability
size of search space
tricks to speed search/inference

• Acquisition
hand-designed vs. learned
static vs. short-term

• Factorization
independent aspects
hierarchy & specificity
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Computational Auditory 
Scene Analysis

• Central idea:
Segment time-frequency into sources
based on perceptual grouping cues

... principal cue is harmonicity
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CASA limitations
• Limitations of T-F masking

cannot undo overlaps – leaves gaps

• Typically driven by local features
limited model scope ➝ no inference or illusions

• Processing hand-defined, not learned
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Can Models Do CASA?
• Source models can learn harmonicity, onset

... to subsume rules/representations of CASA

can capture spatial info too [Pearlmutter & Zador’04]

• Can also capture sequential structure
e.g. consonants follow vowels
... like people do?

• But: need source-specific models
... for every possible source
use model adaptation? [Ozerov et al. 2005]
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Separation or Description?
• Are isolated waveforms required?

clearly sufficient, but may not be necessary
not part of perceptual source separation!

• Integrate separation with application?
e.g. speech recognition

words output = abstract description of signal
20
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Dictionary Models
• Given models for sources, 

find “best” (most likely) states for spectra:

can include sequential constraints...
different domains for combining c and defining 

• E.g. stationary noise:
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Speech Recognition Models
• Cooke & Lee Speech Separation Challenge

short, grammatically-constrained utterances:
<command:4><color:4><preposition:4><letter:25><number:10><adverb:4>

       e.g. "bin white by R 8 again"

task: report letter+number for “white”

• Decode with Factorial HMM
i.e. two state sequences, one model for each voice
exploit sequence constraints
exploit speaker differences

• IBM “superhuman” system
fewer errors than people for same speaker, level
exploits known speakers, limited grammar
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Speaker-Adapted (SA) Models
• Factorial HMM needs distinct speakers

23

Mixture: t32_swil2a_m18_sbar9n

 

 

0
2
4
6

!40

!20

0

Adaptation iteration 1

 

 

0
2
4
6

!40

!20

0

Fr
eq

ue
nc

y 
(k

H
z) Adaptation iteration 3

 

 

0
2
4
6

!40

!20

0

Adaptation iteration 5

 

 

0
2
4
6

!40

!20

0

Time (sec)

SD model separation

 

 

0 0.5 1 1.5
0
2
4
6

!40

!20

0

use “eigenvoice”  speaker space

iterate estimating voice & 
separating speech

performs midway between 
speaker-independent (SI) and 
speaker-dependent (SD)

SI

SA

SD

!"# $"# %"# !$"# !!"# !&"#
%

'%

(%%
)*+,-.*/0,1

!"# $"# %"# !$"# !!"# !&"#
%

'%

(%%

2
3
3
4
1*
3
5

)*+,-6,7",1

%

'%

(%%
89::-6,7",1

-

-

;1*3/, )8 )2 )< #*=,/97,

Ron Weiss

ac
c 

%



Sound Source Models - Dan Ellis 2007-05-24 -    /30

(Pitch) Factored Dictionaries

• Separate representations for 
“source” (pitch) and “filter”
NM codewords 
from N+M entries
but: overgeneration...

• Faster search
direct extraction of pitches
immediate separation of 
(most of) spectra
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Outline
1.  Mixtures & Models
2.  Human Sound Organization
3.  Machine Sound Organization
4.  Ambient Sounds

binaural separation 
“personal audio” analysis
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Binaural Localization by EM
• 2 or 3 sources in reverberation
• Iteratively estimate ILD, IPD

initialize from PHAT ITD histogram
output is soft TF mask
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“Personal Audio” Archives
• Continuous recordings 

with MP3 player
• Segment / cluster “episodes”

.. by statistics of ~10 s segments 

.. for browsing interface
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Personal Audio Speech Detection
• Pitch is last speech cue to disappear

noise robust pitch tracker for voice detection
biggest problem was periodic noise
(air conditioning) 
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Repeating Events in Personal Audio
• “Unsupervised” feature to help browsing
• Full NxN search is very expensive

use Shazam fingerprint hashes to find repeats

only works for exact repeats (alarms, jingles)

• O(N) scan for repeats
fixed-size hash table 
multiple common hashes ➝ confident match
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Summary & Conclusions
• Listeners do well separating sound mixtures

using signal cues (location, periodicity)
using source-property variations

• Machines do less well
difficult to apply enough constraints
need to exploit signal detail

• Models capture constraints
learn from the real world
adapt to sources

• Separation feasible only sometimes
describing source properties is easier
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