Using Sound Source Models to Organize Mixtures

Dan Ellis

Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Eng., Columbia Univ., NY USA

dpwe@ee.columbia.edu

http://labrosa.ee.columbia.edu/

- Mixtures and Models
- 2. Human Sound Organization
- 3. Machine Sound Organization
- 4. Ambient Sounds

2007-05-24 - 1/30

The Problem of Mixtures

"Imagine two narrow channels dug up from the edge of a lake, with handkerchiefs stretched across each one. Looking only at the motion of the handkerchiefs, you are to answer questions such as: How many boats are there on the lake and where are they?" (after Bregman'90)

- Received waveform is a mixture
 2 sensors, N sources underconstrained
- Undoing mixtures: hearing's primary goal?

•.. by any means available

2007-05-24 - 2/30

Sound Organization Scenarios

- Interactive voice systems
 human-level understanding is expected
- Speech prostheses

• crowds: #1 complaint of hearing aid users

- Archive analysis
 - identifying and isolating sound events

2007-05-24 - 3/30

How Can We Separate?

- By between-sensor differences (spatial cues)
 'steer a null' onto a compact interfering source
 the filtering/signal processing paradigm
- By finding a 'separable representation'
 spectral? sources are broadband but sparse
 periodicity? maybe for pitched sounds
 something more signal-specific...
- By inference (based on knowledge/models)
 acoustic sources are redundant
 - \rightarrow use part to guess the remainder
 - limited possible solutions

Separation vs. Inference

- Ideal separation is rarely possible
 i.e. no projection can completely remove overlaps
- Overlaps → Ambiguity

 scene analysis = find "most reasonable" explanation

 Ambiguity can be expressed probabilistically

• i.e. posteriors of sources $\{S_i\}$ given observations X:

 $P(\{S_i\} | X) \propto P(X | \{S_i\}) P(\{S_i\})$ combination physics source models

- Better source models \rightarrow better inference
 - •.. learn from examples?

2007-05-24 - 5/30

A Simple Example

 Source models are codebooks from separate subspaces

A Slightly Less Simple Example

• Sources with Markov transitions

Laboratory for the Recognition and Organization of Speech and Audio

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

What is a Source Model?

- Source Model describes signal behavior
 encapsulates constraints on form of signal
 (any such constraint can be seen as a model...)
- A model has parameters
 o model + parameters
 → instance

- What is *not* a source model?
 - detail not provided in instance e.g. using phase from original mixture
 - constraints on interaction between sources e.g. independence, clustering attributes

Sound Source Models - Dan Ellis

2007-05-24 - 8/30

Outline

- I. Mixtures and Models
- 2. Human Sound Organization
 - Auditory Scene Analysis
 - Using source characteristics
 - Illusions
- 3. Machine Sound Organization
- 4. Ambient Sounds

Auditory Scene Analysis Bregman'90

- How do people analyze sound mixtures?
 - break mixture into small elements (in time-freq)
 - elements are grouped in to sources using cues
 - sources have aggregate attributes
- Grouping rules (Darwin, Carlyon, ...):

• cues: common onset/modulation, harmonicity, ...

(after Darwin 1996)

Also learned "schema" (for speech etc.)

Sound Source Models - Dan Ellis

2007-05-24 - 10/30

Perceiving Sources

 Harmonics distinct in ear, but perceived as one source ("fused"):

- depends on common onsetdepends on harmonics
- Experimental techniques
 - ask subjects "how many"

• match attributes e.g. pitch, vowel identity

• brain recordings (EEG "mismatch negativity")

Sound Source Models - Dan Ellis

2007-05-24 - 11/30

Auditory "Illusions"

Human Speech Separation

Task: Coordinate Response Measure

- "Ready Baron go to green eight now"
- 256 variants, 16 speakers

COLUMBIA UNIVERSITY

- correct = color and number for "Baron"
- Accuracy as a function of spatial separation:

Separation by Vocal Differences

• CRM varying the level and voice character

Sound Source Models - Dan Ellis

2007-05-24 - 14/30

Brungart et al.'0 l

Outline

- I. Mixtures and Models
- 2. Human Sound Organization
- 3. Machine Sound Organization
 - Computational Auditory Scene Analysis
 - Dictionary Source Models
- 4. Ambient Sounds

Source Model Issues

• Domain

• parsimonious expression of constraints

• nice combination physics

• Tractability

• size of search space

• tricks to speed search/inference

• Acquisition

• hand-designed vs. learned

• static vs. short-term

• Factorization

• independent aspects

• hierarchy & specificity

2007-05-24 - 16/30

Computational Auditory Scene Analysis Brow

Brown & Cooke'94 Okuno et al.'99 Hu & Wang'04 ...

• Central idea:

Segment time-frequency into sources based on perceptual grouping cues

• Processing hand-defined, not learned

2007-05-24 - 18/30

Can Models Do CASA?

• Source models can learn harmonicity, onset

• ... to subsume rules/representations of CASA

• can capture spatial info too [Pearlmutter & Zador'04]

• Can also capture sequential structure

- e.g. consonants follow vowels
- ... like people do?
- But: need source-specific models
 ... for every possible source

• use model adaptation? [Ozerov et al. 2005]

Sound Source Models - Dan Ellis

2007-05-24 - 19/30

Separation or Description?

- Are isolated waveforms required?
 clearly sufficient, but may not be necessary
 not part of perceptual source separation!
- Integrate separation with application?
 e.g. speech recognition

Dictionary Models

• Given models for sources, find "best" (most likely) states for spectra: $p(\mathbf{x}|i_{1},i_{2}) = \mathcal{N}(\mathbf{x};\mathbf{c}_{i1} + \mathbf{c}_{i2}, \Sigma) \stackrel{\text{combination}}{\text{model}}$ $\{i_{1}(t), i_{2}(t)\} = argmax_{i_{1},i_{2}}p(\mathbf{x}(t)|i_{1},i_{2}) \quad inference \text{ of source state}}$

• can include sequential constraints...

 ${\rm \circ}$ different domains for combining c and defining Σ

Speech Recognition Models

Cooke & Lee Speech Separation Challenge

short, grammatically-constrained utterances:
 <command:4><color:4><preposition:4><letter:25><number:10><adverb:4></letter:25
 e.g. "bin white by R 8 again"

• task: report letter+number for "white"

Decode with Factorial HMM

- i.e. two state sequences, one model for each voice
- exploit sequence constraints
- exploit speaker differences
- IBM "superhuman" system Kristjansson, Hershey et al. '06
 fewer errors than people for same speaker, level
 - exploits known speakers, limited grammar

Sound Source Models - Dan Ellis

2007-05-24 - 22/30

Speaker-Adapted (SA) Models

• Factorial HMM needs distinct speakers

Laboratory for the Recognition and Organization of Speech and Audio • use "eigenvoice" speaker space

- iterate estimating voice & separating speech
- performs midway between speaker-independent (SI) and speaker-dependent (SD)

SA

SD

COLUMBIA UNIVERSITY

(Pitch) Factored Dictionaries

Ghandi & Has-John. '04 Radfar et al. '06

- Separate representations for "source" (pitch) and "filter"
 NM codewords from *N+M* entries
 but: overgeneration...
- Faster search
 direct extraction of pitches
 immediate separation of (most of) spectra

2007-05-24 - 24/30

Outline

- I. Mixtures & Models
- 2. Human Sound Organization
- 3. Machine Sound Organization
- 4. Ambient Sounds
 - binaural separation
 - "personal audio" analysis

Laboratory for the Recognition and Organization of Speech and Audio

COLUMBIA UNIVERSITY

"Personal Audio" Archives

- Continuous recordings with MP3 player
- Segment / cluster "episodes"
 - •... by statistics of ~10 s segments
 - .. for browsing interface

Lab

Laboratory for the Recognition and

Organization of Speech and Audio

Personal Audio Speech Detection

Keansub Lee, Interspeech'06

• Pitch is last speech cue to disappear

noise robust pitch tracker for voice detection

• biggest problem was periodic noise (air conditioning)

Sound Source Models - Dan Ellis

2007-05-24 - 28/30

Repeating Events in Personal Audio

- "Unsupervised" feature to help browsing
- Full NxN search is very expensive
 - use Shazam fingerprint hashes to find repeats

only works for exact repeats (alarms, jingles)

- O(N) scan for repeats
 - fixed-size hash table
 - multiple common hashes \rightarrow confident match

_ab

Laboratory for the Recognition and Organization of Speech and Audio 2007-05-24 - 29/30

Summary & Conclusions

- Listeners do well separating sound mixtures
 using signal cues (location, periodicity)
 using source-property variations
- Machines do less well
 o difficult to apply enough constraints
 o need to exploit signal detail
- Models capture constraints
 - learn from the real world
 - adapt to sources
- Separation feasible only sometimes
 - describing source properties is easier

