Using Sound Source Models to Organize Mixtures

Dan Ellis

Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Eng., Columbia Univ., NY USA dpwe@ee.columbia.edu

1. Mixtures and Models
2. Human Sound Organization Machine Sound Organization 4. Ambient Sounds

The Problem of Mixtures

"Imagine two narrow channels dug up from the edge of a lake, with handkerchiefs stretched across each one. Looking only at the motion of the handkerchiefs, you are to answer questions such as: How many boats are there on the lake and where are they?" (after Bregman'90)

- Received waveform is a mixture
- 2 sensors, N sources - underconstrained
- Undoing mixtures: hearing's primary goal?
o .. by any means available

Sound Organization Scenarios

- Interactive voice systems
o human-level understanding is expected
- Speech prostheses
o crowds: \#| complaint of hearing aid users
- Archive analysis
o identifying and isolating sound events

- Unmixing/remixing/enhancement...

How Can We Separate?

- By between-sensor differences (spatial cues) o 'steer a null' onto a compact interfering source o the filtering/signal processing paradigm
- By finding a 'separable representation’ o spectral? sources are broadband but sparse o periodicity? maybe - for pitched sounds - something more signal-specific...
- By inference (based on knowledge/models)
o acoustic sources are redundant
\rightarrow use part to guess the remainder
- limited possible solutions

Separation vs. Inference

- Ideal separation is rarely possible o i.e. no projection can completely remove overlaps
- Overlaps \rightarrow Ambiguity
o scene analysis = find "most reasonable" explanation
- Ambiguity can be expressed probabilistically o i.e. posteriors of sources $\left\{S_{i}\right\}$ given observations X :

$$
P\left(\left\{S_{i}\right\} \mid X\right) \propto P\left(X \mid\left\{S_{i}\right\}\right) P\left(\left\{S_{i}\right\}\right)
$$

combination physics source models

- Better source models \rightarrow better inference - .. learn from examples?

A Simple Example

- Source models are codebooks from separate subspaces

Codebooks

Observed sequence (sum of both sources)

Inferred codebook indices

A Slightly Less Simple Example

- Sources with Markov transitions

What is a Source Model?

- Source Model describes signal behavior o encapsulates constraints on form of signal - (any such constraint can be seen as a model...)
- A model has parameters o model + parameters
\rightarrow instance

- What is not a source model?
- detail not provided in instance e.g. using phase from original mixture
- constraints on interaction between sources e.g. independence, clustering attributes

Outline

1. Mixtures and Models Human Sound Organization
 - Auditory Scene Analysis
 - Using source characteristics
 - Illusions
 Machine Sound Organization
 4. Ambient Sounds

Auditory Scene Analysis

- How do people analyze sound mixtures?
o break mixture into small elements (in time-freq)
o elements are grouped in to sources using cues
o sources have aggregate attributes
- Grouping rules (Darwin, Carlyon, ...):
o cues: common onset/modulation, harmonicity, ...

(after Darwin 1996)
- Also learned "schema" (for speech etc.)

Perceiving Sources

- Harmonics distinct in ear, but perceived as one source ("fused"):

o depends on common onset
- depends on harmonics
- Experimental techniques
o ask subjects "how many"

O match attributes e.g. pitch, vowel identity o brain recordings (EEG "mismatch negativity")

Auditory "Illusions"

- How do we explain illusions? - pulsation threshold

o sinewave speech
o phonemic restoration
- Something is providing the
 missing (illusory) pieces ... source models

Human Speech Separation

- Task: Coordinate Response Measure o "Ready Baron go to green eight now" - 256 variants, 16 speakers
- correct = color and number for "Baron"
- Accuracy as a function of spatial separation:

Lab

- A, B same speaker
- Range effect

Separation by Vocal Differences

- CRM varying the level and voice character

(same spatial location)
- energetic vs. informational masking
o more than pitch .. source models

Outline

1. Mixtures and Models
 2. Human Sound Organization Machine Sound Organization
 - Computational Auditory Scene Analysis
 - Dictionary Source Models
 4. Ambient Sounds

Source Model Issues

- Domain

o parsimonious expression of constraints
o nice combination physics

- Tractability
- size of search space
o tricks to speed search/inference
- Acquisition
- hand-designed vs. learned
o static vs. short-term
- Factorization
- independent aspects
o hierarchy \& specificity

Computational Auditory Scene Analysis

- Central idea:

Segment time-frequency into sources based on perceptual grouping cues

- ... principal cue is harmonicity

CASA limitations

- Limitations of T-F masking
o cannot undo overlaps - leaves gaps

- Typically driven by local features
- limited model scope \rightarrow no inference or illusions
- Processing hand-defined, not learned

Can Models Do CASA?

- Source models can learn harmonicity, onset - ... to subsume rules/representations of CASA

o can capture spatial info too [Pearlmutter \& Zador'04]
- Can also capture sequential structure
o e.g. consonants follow vowels
- ... like people do?
- But: need source-specific models ... for every possible source

Separation or Description?

- Are isolated waveforms required?
o clearly sufficient, but may not be necessary o not part of perceptual source separation!
- Integrate separation with application?
- e.g. speech recognition

Lab

Dictionary Models

- Given models for sources, find "best" (most likely) states for spectra:

$$
\begin{gathered}
p\left(\mathbf{x} \mid i_{1}, i_{2}\right)=\mathcal{N}\left(\mathbf{x} ; \mathbf{c}_{i 1}+\mathbf{c}_{i 2}, \Sigma\right), \begin{array}{c}
\text { combination } \\
\text { model }
\end{array} \\
\left\{i_{1}(t), i_{2}(t)\right\}=\operatorname{argmax}_{i_{1}, i_{2}} p\left(\mathbf{x}(t) \mid i_{1}, i_{2}\right) \begin{array}{l}
\text { inference of } \\
\text { source state }
\end{array}
\end{gathered}
$$

o can include sequential constraints...
\circ different domains for combining \mathbf{c} and defining Σ

- E.g. stationary noise:

Speech Recognition Models

- Cooke \& Lee Speech Separation Challenge o short, grammatically-constrained utterances: command:4color:4preposition:4letter:25number:10adverb:4 e.g. "bin white by R 8 again"
o task: report letter+number for "white"
- Decode with Factorial HMM
o i.e. two state sequences, one model for each voice
o exploit sequence constraints
o exploit speaker differences
- IBM"superhuman" system o exploits known speakers, limited grammar

Speaker-Adapted (SA) Models

Ron Weiss

- Factorial HMM needs distinct speakers

Mixture: t32_swil2a_m18_sbar9n

o use "eigenvoice" speaker space

Adaptation iteration 1

Adaptation iteration 5

o iterate estimating voice \& separating speech
o performs midway between speaker-independent (SI) and speaker-dependent (SD)

Diff Gender

SD model separation

(Pitch) Factored Dictionaries

- Separate representations for "source" (pitch) and "filter"
- NM codewords from $N+M$ entries o but: overgeneration...
- Faster search
o direct extraction of pitches o immediate separation of (most of) spectra

Outline

1. Mixtures \& Models
2. Human Sound Organization
3. Machine Sound Organization
4. Ambient Sounds
o binaural separation
o "personal audio" analysis

Binaural Localization by EM

- 2 or 3 sources in reverberation - Iteratively estimate ILD, IPD
o initialize from PHAT ITD histogram o output is soft TF mask

DUET

EM+1ILD (tied μ)

PHAT Histogram

EM-ILD (IPD only)

"Personal Audio" Archives

- Continuous recordings with MP3 player
- Segment / cluster "episodes" - .. by statistics of $\sim 10 \mathrm{~s}$ segments - .. for browsing interface

Personal Audio Speech Detection

peansu

 o noise robust pitch tracker for voice detection - biggest problem was periodic noise (air conditioning)

Repeating Events in Personal Audio

- "Unsupervised" feature to help browsing
- Full NxN search is very expensive
o use Shazam fingerprint hashes to find repeats
Phone ring - Shazam fingerprint

o only works for exact repeats (alarms, jingles)
- $O(N)$ scan for repeats
o fixed-size hash table
o multiple common hashes \rightarrow confident match

Summary \& Conclusions

- Listeners do well separating sound mixtures o using signal cues (location, periodicity)
o using source-property variations
- Machines do less well
- difficult to apply enough constraints
- need to exploit signal detail
- Models capture constraints
o learn from the real world
o adapt to sources
- Separation feasible only sometimes - describing source properties is easier

