Sound, Mixtures, and Learning: LabROSA overview

- **1** Sound Content Analysis
- Recognizing sounds
- Organizing mixtures
- 4 Accessing large datasets
- **6** Music Information Retrieval

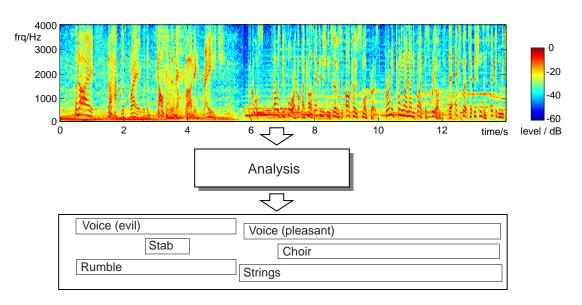
Dan Ellis <dpwe@ee.columbia.edu>

Laboratory for Recognition and Organization of Speech and Audio (LabROSA)

Columbia University, New York http://labrosa.ee.columbia.edu/

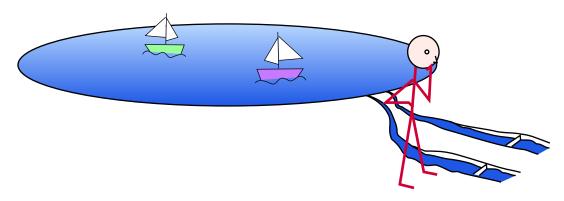
1

Sound Content Analysis



- Sound understanding: the key challenge
 - what listeners do
 - understanding = abstraction
- Applications
 - indexing/retrieval
 - robots
 - prostheses

The problem with recognizing mixtures



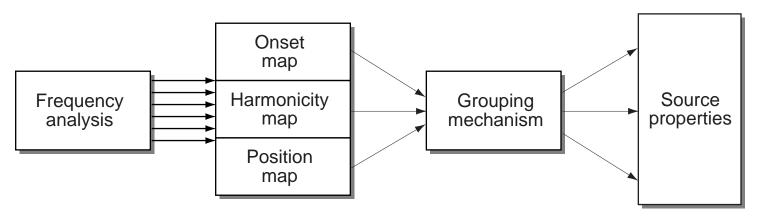
"Imagine two narrow channels dug up from the edge of a lake, with handkerchiefs stretched across each one. Looking only at the motion of the handkerchiefs, you are to answer questions such as: How many boats are there on the lake and where are they?" (after Bregman'90)

- Auditory Scene Analysis: describing a complex sound in terms of high-level sources/events
 - ... like listeners do
- Hearing is ecologically grounded
 - reflects natural scene properties = constraints
 - subjective, not absolute

Auditory Scene Analysis

(Bregman 1990)

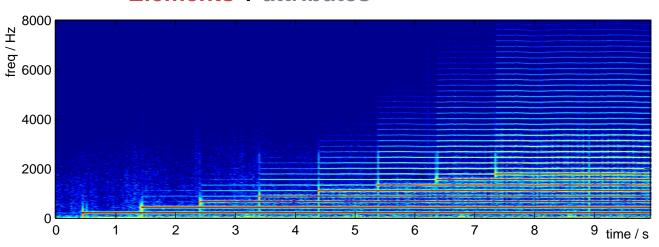
- How do people analyze sound mixtures?
 - break mixture into small *elements* (in time-freq)
 - elements are *grouped* in to sources using *cues*
 - sources have aggregate attributes
- Grouping 'rules' (Darwin, Carlyon, ...):
 - cues: common onset/offset/modulation, harmonicity, spatial location, ...



(after Darwin, 1996)

Cues to simultaneous grouping

Elements + attributes



Common onset

- simultaneous energy has common source

Periodicity

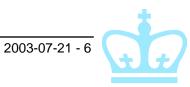
- energy in different bands with same cycle

Other cues

- spatial (ITD/IID), familiarity, ...

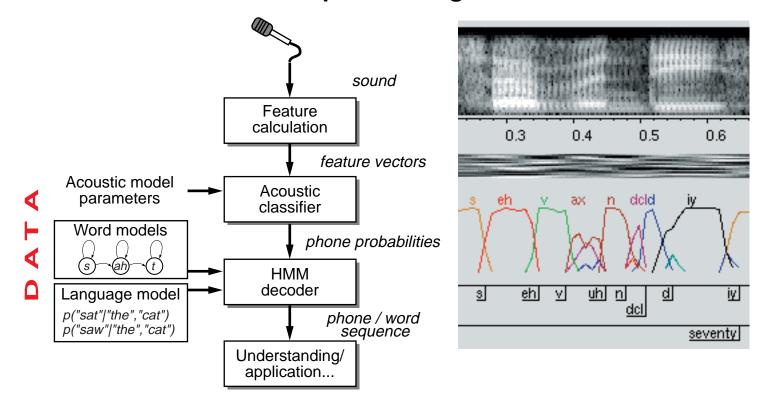
Outline

- 1 Sound Content Analysis
- 2 Recognizing sounds
 - Clean speech
 - Speech-in-noise
 - Nonspeech
- **3** Organizing mixtures
- 4 Accessing large datasets
- **5** Music Information Retrieval



Recognizing Sounds: Speech

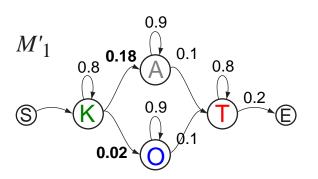
Standard speech recognition structure:

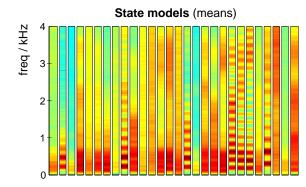


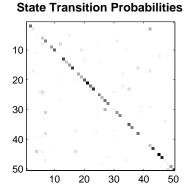
- How to handle additive noise?
 - just train on noisy data: 'multicondition training'

How ASR Represents Speech

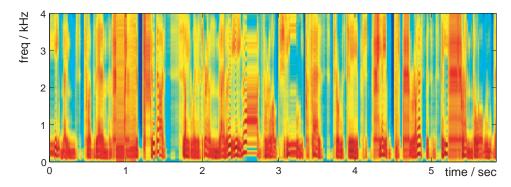
Markov model structure: states + transitions







- A generative model
 - but not a good speech generator!



only meant for inference of p(X|M)

General Audio Recognition

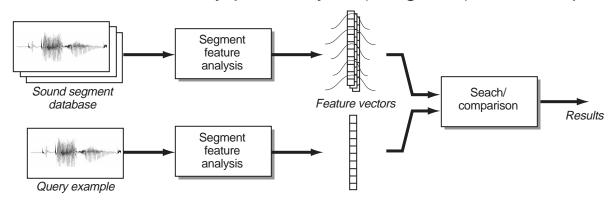
(with Manuel Reyes)

Searching audio databases

- speech .. use ASR
- text annotations .. search them
- sound effects library?

• e.g. Muscle Fish "SoundFisher" browser

- define multiple 'perceptual' feature dimensions
- search by proximity in (weighted) feature space



 features are global for each soundfile, no attempt to separate mixtures

Audio Recognition: Results

Musclefish corpus

- most commonly reported set

Features

- MFCC, brightness, bandwidth, pitch ...
- no temporal structure

Results:

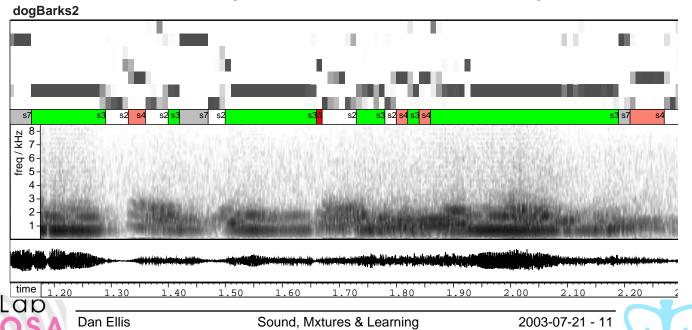
- 208 examples, 16 classes

Global features: 41% corr HMM models: 81% corr.

	Mu	Sp	Env	An	Mec	Ми	Sp	Env	An	Mec
Musical	59/ 46		24	2	19	136/ 6		2	1	5
Speech		11/6	4	5		1	14/ 2	5	3	1
Eviron.			7/ 2			1		7/	1	
Animals			2	1/	2				4/	1
Mechan	1		4	1	8/ 4	3		3		12/_

What are the HMM states?

- No sub-units defined for nonspeech sounds
- Final states depend structure, initialization
 - number of states
 - initial clusters / labels / transition matrix
 - EM update objective
- Have ideas of what we'd like to get
 - investigate features/initialization to get there

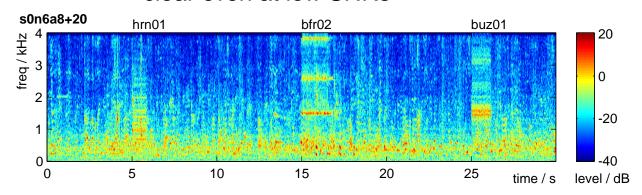


Alarm sound detection

(Ellis 2001)

Alarm sounds have particular structure

- people 'know them when they hear them'
- clear even at low SNRs



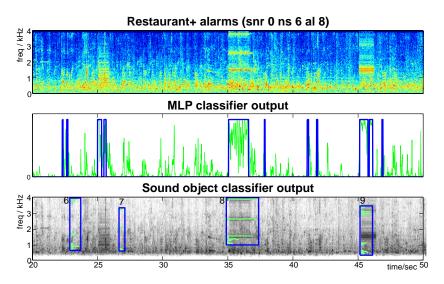
Why investigate alarm sounds?

- they're supposed to be easy
- potential applications...

Contrast two systems:

- standard, global features, P(X|M)
- sinusoidal model, fragments, P(M,S|Y)

Alarms: Results



Both systems commit many insertions at 0dB SNR, but in different circumstances:

Atria	Neur	al net sy	/stem	Sinusoid model system			
Noise	Del	Ins	Tot	Del	Ins	Tot	
1 (amb)	7 / 25	2	36%	14 / 25	1	60%	
2 (bab)	5 / 25	63	272%	15 / 25	2	68%	
3 (spe)	2 / 25	68	280%	12 / 25	9	84%	
4 (mus)	8 / 25	37	180%	9 / 25	135	576%	
Overall	22 / 100	170	192%	50 / 100	147	197%	

Outline

- 1 Sound Content Analysis
- 2 Recognizing sounds
- Organizing mixtures
 - Auditory Scene Analysis
 - Parallel model inference
- 4 Accessing large datasets
- **5** Music Information Retrieval

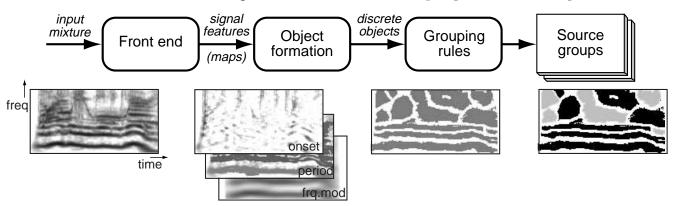
Organizing mixtures: Approaches to handling overlapped sound

- Separate signals, then recognize
 - e.g. CASA, ICA
 - nice, if you can do it
- Recognize combined signal
 - 'multicondition training'
 - combinatorics..
- Recognize with parallel models
 - full joint-state space?
 - or: divide signal into fragments, then use missing-data recognition

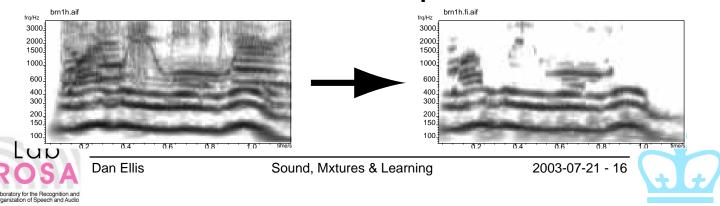
Computational Auditory Scene Analysis: The Representational Approach

(Cooke & Brown 1993)

Direct implementation of psych. theory



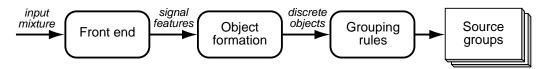
- 'bottom-up' processing
- uses common onset & periodicity cues
- Able to extract voiced speech:



Adding top-down constraints

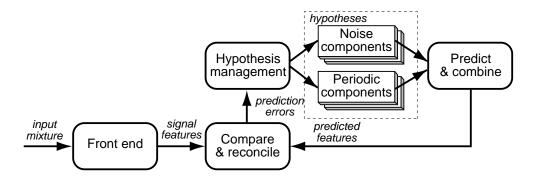
Perception is not direct but a search for plausible hypotheses

Data-driven (bottom-up)...



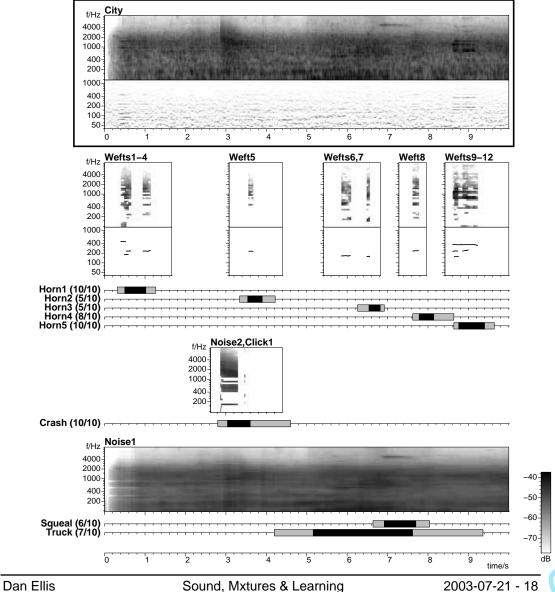
- objects irresistibly appear

vs. Prediction-driven (top-down)



- match observations
 with parameters of a world-model
- need world-model constraints...

Prediction-Driven CASA



Sound, Mxtures & Learning

2003-07-21 - 18

Segregation vs. Inference

Source separation requires attribute separation

- sources are characterized by attributes (pitch, loudness, timbre + finer details)
- need to identify & gather different attributes for different sources ...

Need representation that segregates attributes

- spectral decomposition
- periodicity decomposition

Sometimes values can't be separated

- e.g. unvoiced speech
- maybe infer factors from probabilistic model?

$$p(O, x, y) \rightarrow p(x, y|O)$$

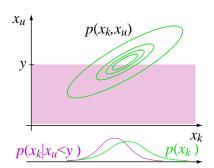
- or: just skip those values,
 infer from higher-level context
- do both: missing-data recognition

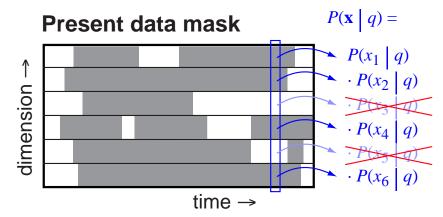
Missing Data Recognition

- Speech models $p(\mathbf{x}|m)$ are multidimensional...
 - i.e. means, variances for every freq. channel
 - need values for all dimensions to get $p(\bullet)$
- But: can evaluate over a subset of dimensions x_k

$$p(\mathbf{x}_k|m) = \int p(\mathbf{x}_k, \mathbf{x}_u|m) d\mathbf{x}_u$$

Hence, missing data recognition:





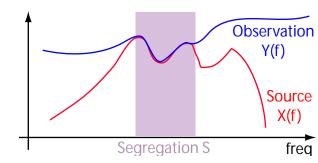
hard part is finding the mask (segregation)

Comparing different segregations

Standard classification chooses between models M to match source features X

$$M^* = \underset{M}{\operatorname{argmax}} P(M|X) = \underset{M}{\operatorname{argmax}} P(X|M) \cdot \frac{P(M)}{P(X)}$$

Mixtures \rightarrow observed features Y, segregation S, all related by P(X|Y,S)



- spectral features allow clean relationship
- Joint classification of model and segregation:

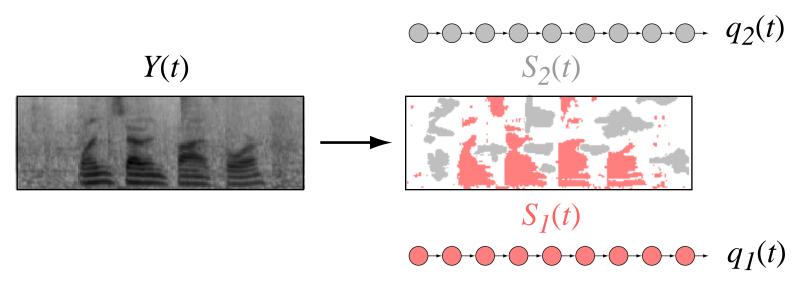
$$P(M, S|Y) = P(M) \int P(X|M) \cdot \frac{P(X|Y, S)}{P(X)} dX \cdot P(S|Y)$$

ab

- probabilistic relation of models & segregation

Multi-source decoding

Search for more than one source



- Mutually-dependent data masks
- Use e.g. CASA features to propose masks
 - locally coherent regions
- Lots of issues in models, representations, matching, inference...

Outline

- **Sound Content Analysis**
- **Recognizing sounds**
- **Organizing mixtures**
- **Accessing large datasets**
 - Spoken documents
 - The Listening Machine
 - Music preference modeling
- **Music Information Retrieval**

Accessing large datasets: The Meeting Recorder Project

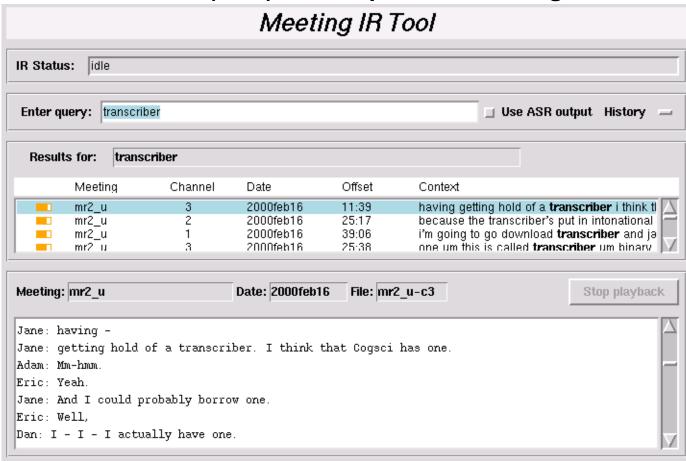
(with ICSI, UW, IDIAP, SRI, Sheffield)

- Microphones in conventional meetings
 - for summarization / retrieval / behavior analysis
 - informal, overlapped speech
- Data collection (ICSI, UW, IDIAP, NIST):

- ~100 hours collected & transcribed
- NSF 'Mapping Meetings' project

Meeting IR tool

IR on (ASR) transcripts from meetings



- ASR errors have limited impact on retrieval

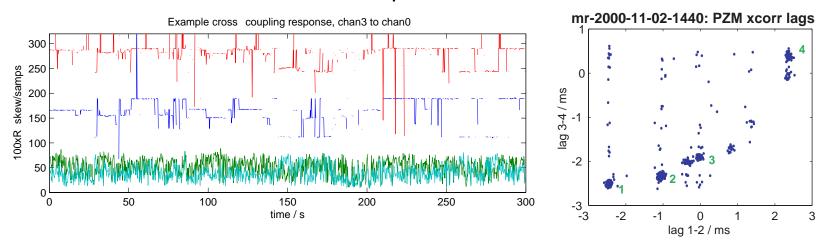
Speaker Turn detection

(Huan Wei Hee, Jerry Liu)

Acoustic:

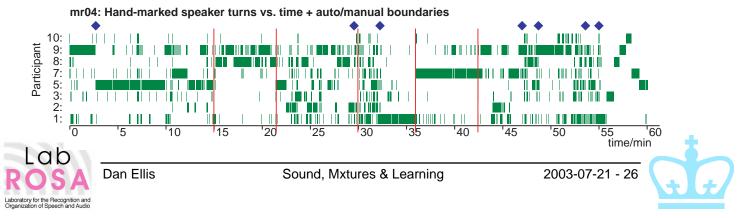
Triangulate tabletop mic timing differences

use normalized peak value for confidence



Behavioral: Look for patterns of speaker turns

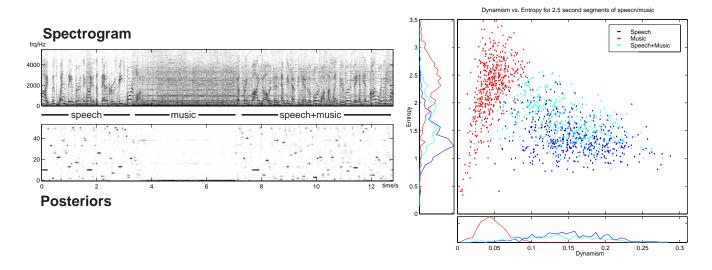
2



Speech/nonspeech detection

(Williams & Ellis 1999)

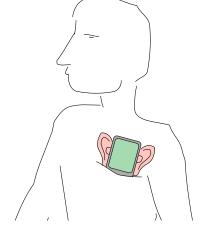
- ASR run over entire soundtracks?
 - for nonspeech, result is nonsense
- Watch behavior of speech acoustic model:
 - average per-frame entropy
 - 'dynamism' mean-squared 1st-order difference



• 1.3% error on 2.5 second speech-music testset

The Listening Machine

- Smart PDA records everything
- Only useful if we have index, summaries
 - monitor for particular sounds
 - real-time description
- Scenarios



- personal listener → summary of your day
- future prosthetic hearing device
- autonomous robots
- Meeting data, ambulatory audio

Personal Audio

LifeLog / MyLifeBits / Remembrance Agent:
 Easy to record everything you hear

- Then what?
 - prohibitively time consuming to search
 - but .. applications if access easier
- Automatic content analysis / indexing...

Outline

- **1** Sound Content Analysis
- 2 Recognizing sounds
- 3 Organizing mixtures
- 4 Accessing large datasets
- Music Information Retrieval
 - Anchor space
 - Playola browser

5

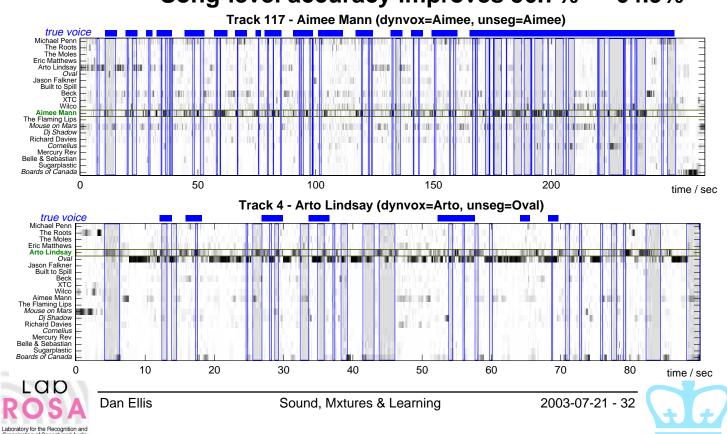
Music Information Retrieval

- Transfer search concepts to music?
 - "musical Google"
 - finding something specific / vague / browsing
 - is anything more useful than human annotation?
- Most interesting area: finding new music
 - is there anything on mp3.com that I would like?
 - audio is only information source for new bands
- Basic idea: Project music into a space where neighbors are "similar"
- Also need models of personal preference
 - where in the space is the stuff I like
 - relative sensitivity to different dimensions
- Evaluation problems
 - requires large, shareable music corpus!

Artist Classification

(Berenzweig et al. 2001)

- Artists' oeuvres as similarity-sets
- Train MLP to classify frames among 21 artists
- Using (detected) voice segments:
 Song-level accuracy improves 56.7% → 64.9%



Artist Similarity

- Recognizing work from each artist is all very well...
- But: what is similarity between artists?
- pattern recognition systems give a number...

```
Bn_cafeti_braxton lara_fabiarasure jessica_simpson lara_fabiarasure jessica_simpson new_ janet_jackson eiffel_65 whitney celine_dionet_shop_boys lauryfhiintina_aguileaqua

s sade sof backstælefabites spice_girlsbelinda_danisle piain miroquai nelly_aurtæd@ennox
```

Which artist is most similar to: Janet Jackson?

- 1. R. Kelly
- 2. Paula Abdul
- 3. Aaliyah
- 4. Milli Vanilli
- 5. En Vogue
- 6. Kansas
- 7. Garbage
- 8. Pink
- 9. Christina Aguilera

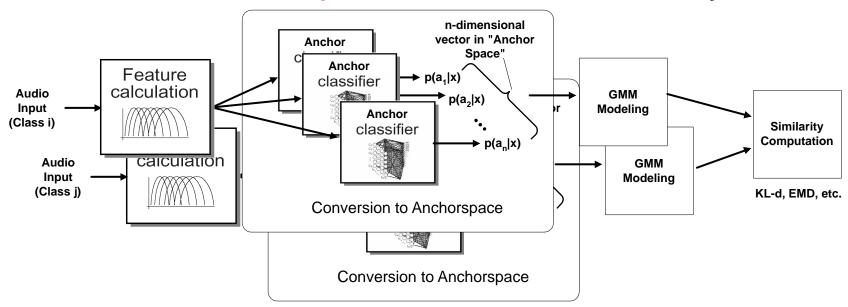
Need subjective ground truth: Collected via web site

www.musicseer.com

- Results:
 - 1,000 users, 22,300 judgments collected over 6 months

Music similarity from Anchor space

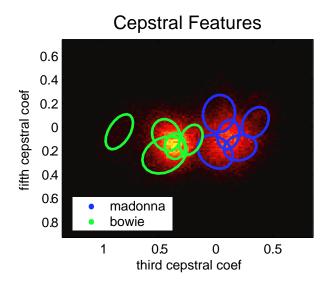
- A classifier trained for one artist (or genre)
 will respond partially to a similar artist
- Each artist evokes a particular pattern of responses over a set of classifiers
- We can treat these classifier outputs as a new feature space in which to estimate similarity

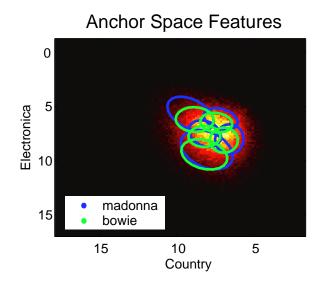


"Anchor space" reflects subjective qualities?

Anchor space visualization

 Comparing 2D projections of per-frame feature points in cepstral and anchor spaces:

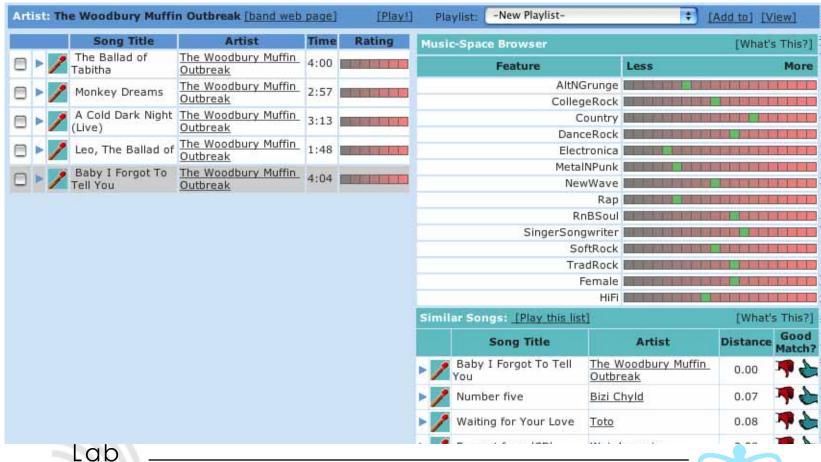




- each artist represented by 5GMM
- greater separation under MFCCs!
- but: relevant information?

Playola interface (www.playola.org)

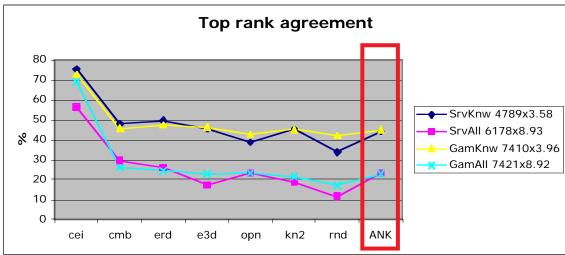
- Browser finds closest matches to single tracks or entire artists in anchor space
- Direct manipulation of anchor space axes



Laboratory for the Recognition and

Evaluation

- Are recommendations good or bad?
- Subjective evaluation is the ground truth
 - .. but subjects aren't familiar with the bands being recommended
 - can take a long time to decide if a recommendation is good
- Measure match to other similarity judgments
 - e.g. musicseer data:



Summary

Sound

- .. contains much, valuable information at many levels
- intelligent systems need to use this information

Mixtures

- .. are an unavoidable complication when using sound
- looking in the right time-frequency place to find points of dominance

Learning

- need to acquire constraints from the environment
- recognition/classification as the real task

LabROSA Summary

SOMAINS

- Broadcast
- Movies
- Lectures

- Meetings
- Personal recordings
- Location monitoring

ROSA

- Object-based structure discovery & learning
- Speech recognition
- Speech characterization
- Nonspeech recognition
- Scene analysis
 - Audio-visual integration
 - Music analysis

APPLICATIONS

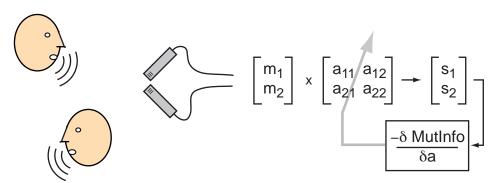
- Structuring
- Search
- Summarization
- Awareness
- Understanding

Extra Slides

Independent Component Analysis (ICA)

(Bell & Sejnowski 1995 et seq.)

 Drive a parameterized separation algorithm to maximize independence of outputs



Advantages:

- mathematically rigorous, minimal assumptions
- does not rely on prior information from models

Disadvantages:

- may converge to local optima...
- separation, not recognition
- does not exploit prior information from models

