Sound, Mixtures, and Learning: LabROSA overview

(1) Sound Content Analysis
(2) Recognizing sounds
(3) Organizing mixtures
(4) Accessing large datasets

5 Music Information Retrieval

Dan Ellis dpwe@ee.columbia.edu
Laboratory for Recognition and Organization of Speech and Audio (LabROSA)
Columbia University, New York
http://labrosa.ee.columbia.edu/

Sound Content Analysis

- Sound understanding: the key challenge
- what listeners do
- understanding = abstraction
- Applications
- indexing/retrieval
- robots
- prostheses

The problem with recognizing mixtures

"Imagine two narrow channels dug up from the edge of a lake, with handkerchiefs stretched across each one. Looking only at the motion of the handkerchiefs, you are to answer questions such as: How many boats are there on the lake and where are they?" (after Bregman'90)

- Auditory Scene Analysis: describing a complex sound in terms of high-level sources/events
- ... like listeners do
- Hearing is ecologically grounded
- reflects natural scene properties = constraints
- subjective, not absolute

Laborator for the Recogntion and
Organizaito of Speech and Audio

Auditory Scene Analysis

(Bregman 1990)

- How do people analyze sound mixtures?
- break mixture into small elements (in time-freq)
- elements are grouped in to sources using cues
- sources have aggregate attributes
- Grouping 'rules’ (Darwin, Carlyon, ...):
- cues: common onset/offset/modulation, harmonicity, spatial location, ...

(after Darwin, 1996)

Laboratory for the Recognition and
Organizaito 0 Speech and Audio

Cues to simultaneous grouping

- Elements + attributes

- Common onset
- simultaneous energy has common source
- Periodicity
- energy in different bands with same cycle
- Other cues
- spatial (ITD/IID), familiarity, ...
- But: Context ...

Laboratary for the Recogntion and
Organizaito of of Speech and and Audio

Outline

(1) Sound Content Analysis
(2) Recognizing sounds

- Clean speech
- Speech-in-noise
- Nonspeech
(3) Organizing mixtures
(4) Accessing large datasets
(5) Music Information Retrieval

(2) Recognizing Sounds: Speech

- Standard speech recognition structure:

- How to handle additive noise?
- just train on noisy data: 'multicondition training’

Dan Ellis

How ASR Represents Speech

- Markov model structure: states + transitions

State Transition Probabilities

- A generative model
- but not a good speech generator!

- only meant for inference of $p(X \mid M)$

General Audio Recognition

(with Manuel Reyes)

- Searching audio databases
- speech .. use ASR
- text annotations .. search them
- sound effects library?
- e.g. Muscle Fish "SoundFisher" browser
- define multiple 'perceptual' feature dimensions
- search by proximity in (weighted) feature space

- features are global for each soundfile, no attempt to separate mixtures

Laboratory for the Recogntion and
Organizaion Ot Speech and Audio

Audio Recognition: Results

- Musclefish corpus
- most commonly reported set
- Features
- MFCC, brightness, bandwidth, pitch ...
- no temporal structure
- Results:
- 208 examples, 16 classes

Global features: 41\% corr

	$M u$	$S p$	$E n v$	$A n$	Mec
Musical	$59 /$ 46		24	2	19
Speech		$11 / 6$	4	5	
Eviron.			$7 / 2$		
Animals			2	$1 /$	2
Mechan	1		4	1	$8 / 4$

Laboratory for the Recogntition and
Organizaiton Of Speech and Audio

What are the HMM states?

- No sub-units defined for nonspeech sounds
- Final states depend structure, initialization
- number of states
- initial clusters / labels / transition matrix
- EM update objective
- Have ideas of what we'd like to get
- investigate features/initialization to get there

Alarm sound detection

(Ellis 2001)

- Alarm sounds have particular structure
- people 'know them when they hear them'
- clear even at low SNRs

- Why investigate alarm sounds?
- they're supposed to be easy
- potential applications...
- Contrast two systems:
- standard, global features, $P(X \mid M)$
- sinusoidal model, fragments, $P(M, S \mid Y)$

Dan Ellis

Alarms: Results

MLP classifier output

Sound object classifier output

- Both systems commit many insertions at 0dB SNR, but in different circumstances:

Noise	Neural net system			Sinusoid model system		
	Del	Ins	Tot	Del	Ins	Tot
1 (amb)	$7 / 25$	2	36%	$14 / 25$	1	60%
2 (bab)	$5 / 25$	63	272%	$15 / 25$	2	68%
3 (spe)	$2 / 25$	68	280%	$12 / 25$	9	84%
4 (mus)	$8 / 25$	37	180%	$9 / 25$	135	576%
Overall	$\mathbf{2 2 / 1 0 0}$	170	$\mathbf{1 9 2 \%}$	$\mathbf{5 0 / 1 0 0}$	147	$\mathbf{1 9 7 \%}$

Dan Ellis

Outline

(1) Sound Content Analysis
(2) Recognizing sounds
(3) Organizing mixtures

- Auditory Scene Analysis
- Parallel model inference
(4) Accessing large datasets
(5) Music Information Retrieval

(3) Organizing mixtures: Approaches to handling overlapped sound

- Separate signals, then recognize
- e.g. CASA, ICA
- nice, if you can do it
- Recognize combined signal
- 'multicondition training'
- combinatorics..
- Recognize with parallel models
- full joint-state space?
- or: divide signal into fragments, then use missing-data recognition

Computational Auditory Scene Analysis: The Representational Approach

(Cooke \& Brown 1993)

- Direct implementation of psych. theory

- 'bottom-up’ processing
- uses common onset \& periodicity cues
- Able to extract voiced speech:

Adding top-down constraints

Perception is not direct
 but a search for plausible hypotheses

- Data-driven (bottom-up)...

- objects irresistibly appear
vs. Prediction-driven (top-down)

- match observations with parameters of a world-model
- need world-model constraints...

Dan Ellis

Prediction-Driven CASA

Segregation vs. Inference

- Source separation requires attribute separation
- sources are characterized by attributes (pitch, loudness, timbre + finer details)
- need to identify \& gather different attributes for different sources ...
- Need representation that segregates attributes
- spectral decomposition
- periodicity decomposition
- Sometimes values can't be separated
- e.g. unvoiced speech
- maybe infer factors from probabilistic model?

$$
p(O, x, y) \rightarrow p(x, y \mid O)
$$

- or: just skip those values, infer from higher-level context
- do both: missing-data recognition

Missing Data Recognition

- Speech models $p(\mathbf{x} \mid m)$ are multidimensional...
- i.e. means, variances for every freq. channel
- need values for all dimensions to get $p(\bullet)$
- But: can evaluate over a subset of dimensions x_{k}
$p\left(\left.\mathbf{x}_{k}\right|^{m}\right)=\int p\left(\mathbf{x}_{k}, \mathbf{x}_{u} \mid m\right) d \mathbf{x}_{u}$
- Hence,
missing data recognition:

- hard part is finding the mask (segregation)

Dan Ellis

Comparing different segregations

- Standard classification chooses between
models M to match source features X

$$
M^{*}=\underset{M}{\operatorname{argmax}} P(M \mid X)=\underset{M}{\operatorname{argmax}} P(X \mid M) \cdot \frac{P(M)}{P(X)}
$$

- Mixtures \rightarrow observed features Y, segregation S, all related by $P(X \mid Y, S)$

- spectral features allow clean relationship
- Joint classification of model and segregation:

$$
P(M, S \mid Y)=P(M) \int P(X \mid M) \cdot \frac{P(X \mid Y, S)}{P(X)} d X \cdot P(S \mid Y)
$$

- probabilistic relation of models \& segregation

Multi-source decoding

- Search for more than one source

- Mutually-dependent data masks
- Use e.g. CASA features to propose masks
- locally coherent regions
- Lots of issues in models, representations, matching, inference...

Outline

(1) Sound Content Analysis
(2) Recognizing sounds
(3) Organizing mixtures
(4) Accessing large datasets

- Spoken documents
- The Listening Machine
- Music preference modeling
(5) Music Information Retrieval

(4) Accessing large datasets:

 The Meeting Recorder Project(with ICSI, UW, IDIAP, SRI, Sheffield)

- Microphones in conventional meetings
- for summarization / retrieval / behavior analysis
- informal, overlapped speech
- Data collection (ICSI, UW, IDIAP, NIST):

- ~100 hours collected \& transcribed
- NSF 'Mapping Meetings' project

Meeting IR tool

- IR on (ASR) transcripts from meetings

- ASR errors have limited impact on retrieval

Laboratory for the Recogntion and

Speaker Turn detection

(Huan Wei Hee, Jerry Liu)

- Acoustic:

Triangulate tabletop mic timing differences

- use normalized peak value for confidence

- Behavioral: Look for patterns of speaker turns

Speech/nonspeech detection

(Williams \& Ellis 1999)

- ASR run over entire soundtracks?
- for nonspeech, result is nonsense
- Watch behavior of speech acoustic model:
- average per-frame entropy
- 'dynamism' - mean-squared 1st-order difference

- 1.3% error on 2.5 second speech-music testset

Dan Ellis

The Listening Machine

- Smart PDA records everything
- Only useful if we have index, summaries
- monitor for particular sounds
- real-time description
- Scenarios

- personal listener \rightarrow summary of your day
- future prosthetic hearing device
- autonomous robots
- Meeting data, ambulatory audio

Personal Audio

- LifeLog / MyLifeBits / Remembrance Agent:

Easy to record everything you hear

- Then what?
- prohibitively time consuming to search
- but .. applications if access easier
- Automatic content analysis / indexing...

Outline

(1) Sound Content Analysis
(2) Recognizing sounds
(3) Organizing mixtures
(4) Accessing large datasets
(5) Music Information Retrieval

- Anchor space
- Playola browser

5 Music Information Retrieval

- Transfer search concepts to music?
- "musical Google"
- finding something specific / vague / browsing
- is anything more useful than human annotation?
- Most interesting area: finding new music
- is there anything on mp3.com that I would like?
- audio is only information source for new bands
- Basic idea:

Project music into a space where neighbors are "similar"

- Also need models of personal preference
- where in the space is the stuff I like
- relative sensitivity to different dimensions
- Evaluation problems
- requires large, shareable music corpus!

Artist Classification

(Berenzweig et al. 2001)

- Artists' oeuvres as similarity-sets
- Train MLP to classify frames among 21 artists
- Using (detected) voice segments: Song-level accuracy improves 56.7\% \rightarrow 64.9\%

Track 4 - Arto Lindsay (dynvox=Arto, unseg=Oval)

Artist Similarity

- Recognizing work from each artist is all very well...
- But: what is similarity between artists?
- pattern recognition systems give a number...

ên_cafter lara_fabierasure jessica_simpsinflah_carey \qquad janet_jackson

Which artist is most similar to Janet Jackson?

1. R. Kelly
2. Paula Abdu
3. Aaliyah
4. Milli Vanilli
5. En Vogue
6. Kansas
7. Garbage
8. Pink
9. Christina Aguilera

- Need subjective ground truth: Collected via web site
www.musicseer.com
- Results:
- 1,000 users, 22,300 judgments collected over 6 months

Music similarity from Anchor space

- A classifier trained for one artist (or genre) will respond partially to a similar artist
- Each artist evokes a particular pattern of responses over a set of classifiers
- We can treat these classifier outputs as a new feature space in which to estimate similarity

- "Anchor space" reflects subjective qualities?

Dan Ellis
Laboratory for the Recogntion and
Organizaion of Speech and Audio

Anchor space visualization

- Comparing 2D projections of per-frame feature points in cepstral and anchor spaces:

- each artist represented by 5GMM
- greater separation under MFCCs!
- but: relevant information?

Playola interface (www.playola.org)

- Browser finds closest matches to single tracks or entire artists in anchor space
- Direct manipulation of anchor space axes

Evaluation

- Are recommendations good or bad?
- Subjective evaluation is the ground truth
- .. but subjects aren't familiar with the bands being recommended
- can take a long time to decide if a recommendation is good
- Measure match to other similarity judgments
- e.g. musicseer data:

Dan Ellis

Summary

- Sound
- .. contains much, valuable information at many levels
- intelligent systems need to use this information
- Mixtures
- .. are an unavoidable complication when using sound
- looking in the right time-frequency place to find points of dominance
- Learning
- need to acquire constraints from the environment
- recognition/classification as the real task

LabROSA Summary

- Broadcast
- Movies
- Lectures
- Meetings
- Personal recordings
- Location monitoring

ROSA

- Object-based structure discovery \& learning
- Speech recognition
- Scene analysis
- Speech characterization
- Nonspeech recognition
- Audio-visual integration
- Music analysis
- Structuring
- Search
- Summarization
- Awareness
- Understanding

Extra Slides

Independent Component Analysis (ICA)

(Bell \& Sejnowski 1995 et seq.)

- Drive a parameterized separation algorithm to maximize independence of outputs

- Advantages:
- mathematically rigorous, minimal assumptions
- does not rely on prior information from models
- Disadvantages:
- may converge to local optima...
- separation, not recognition
- does not exploit prior information from models

