
VQ Source Models - Ellis & Weiss 2006-05-16 -    /121

1.  Source Models for Separation
2.  VQ with Perceptual Weighting
3.  Phase and Resynthesis
4.  Conclusions

VQ Source Models:
Perceptual & Phase Issues

Dan Ellis & Ron Weiss
Laboratory for Recognition and Organization of Speech and Audio 

Dept. Electrical Eng., Columbia Univ., NY USA

{dpwe,ronw}@ee.columbia.edu          http://labrosa.ee.columbia.edu/



VQ Source Models - Ellis & Weiss 2006-05-16 -    /12

Single-Channel Scene Analysis
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• How to separate overlapping sounds?

underconstrained: infinitely many decompositions
time-frequency overlaps cause obliteration
.. no obvious segmentation of sources (?)
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combination physics source models

Scene Analysis as Inference
• Ideal separation is rarely possible

i.e. no projection can guarantee to remove overlaps

• Overlaps ⇒ Ambiguity
scene analysis = find “most reasonable” explanation

• Ambiguity can be expressed probabilistically
i.e. posteriors of sources {Si} given observations X:
P({Si}| X) ∝ P(X |{Si}) P({Si})

• Better source models → better inference
.. learn from examples?
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 Vector-Quantized (VQ)
 Source Models

• “Constraint” of source can be captured 
explicitly in a codebook (dictionary):

defines the ‘subspace’ occupied by source

• Codebook minimizes distortion (MSE)
by k-means clustering
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x(t)≈ ci(t) where i(t) ∈ 1 . . .N
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Simple Source Separation
• Given models for sources, 

find “best” (most likely) states for spectra:

can include sequential constraints...
different domains for combining c and defining 

• E.g. stationary noise:
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{i1(t), i2(t)} = argmaxi1,i2p(x(t)|i1, i2)
p(x|i1, i2) = N (x;ci1+ ci2,Σ) combination

model

inference of
source state
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Codebook Size
• Two (main) variables:

o number of codewords    o amount of training data

• Measure average accuracy (distortion):
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Distortion Metric
• Standard MSE gives equal weight by channel

excessive emphasis on high frequencies

• Try e.g. Mel spectrum
approx. log spacing of frequency bins

• Little effect (?):
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Resynthesis Phase
• Codewords quantize spectrum magnitude

phase has arbitrary offset due to STFT grid

• Resynthesis (ISTFT) requires phase info
use mixture phase?  no good for filling-in

• Spectral peaks indicate common 
instantaneous frequency (          )
can quantize and cumulate in resynthesis
.. like the “phase vocoder”
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Resynthesis Phase (2)
• Can also improve phase iteratively

repeat:

goal: 

• Visible
benefit:
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X (1)(t, f )=|X̂(t, f )| · exp{ jφ(1)(t, f )}
x(1)(t)=istft{X (1)(t, f )}

φ(2)(t, f )=∠
(
stft{x(1)(t)}

)

|X (n)(t, f )| = |X̂(t, f )|
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Evaluating Model Quality
• Low distortion is not really the goal;

models are to constrain source separation
fit source spectra but reject non-source signals

• Include sequential constraints
e.g. transition matrix for codewords
.. or smaller HMM with distributions over codebook

• Best way to 
evaluate is 
via a task
e.g. separating 
speech from 
noise 
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Future Directions
• Factorized codebooks

codebooks too large due to combinatorics
separate codebooks for type, formants, excitation?

• Model adaptation
many speaker-dependents model, or...
single speaker-adapted model, fit to each speaker

• Using uncertainty
enhancing noisy speech for listeners:
use special tokens to preserve uncertainty
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Summary
• Source models permit separation of 

underconstrained mixtures
or at least inference of source state

• Explicit codebooks need to be large
.. and chosen to optimize perceptual quality

• Resynthesis phase can be quantized
.. using “phase vocoder” derivative
.. iterative re-estimation helps more

12
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Extra Slides

13
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Other Uses for Source Models
Projecting into the model’s space:

• Restoration / Extension
inferring missing parts

• Generation / Copying:
adaptation + fitting

14
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Example 2: Mixed Speech Recog.
• Cooke & Lee’s Speech Separation Challenge

short, grammatically-constrained utterances:

• IBM’s “superhuman” recognizer:
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<command:4><color:4><preposition:4><letter:25><number:10><adverb:4>
e.g. "bin white at M 5 soon" t5_bwam5s_m5_bbilzp_6p1.wav

System Noise Condition

clean 6dB 0dB -6dB -12dB

HTK 1.0 45.7 82.0 88.6 87.2

GDL-MAP I 2.0 33.2 68.6 85.4 87.3

GDL-MAP II 2.7 7.6 14.8 49.6 77.2

oracle 1.1 4.2 8.4 39.1 76.4

SDL 1.4 3.4 7.7 38.4 77.3

Table 2: Word error rates (percent) on the noisy development set.

The error rate for the “random-guess” system is 87%. The sys-

tems in the table are: 1) The default HTK recognizer, 2) IBM–

GDL MAP–adapted to the speech separation training data, 3)

MAP–adapted to the speech separation training data and artifi-

cially generated training data with added noise, 4) Oracle MAP

adapted Speaker dependent system with known speaker IDs, 5)

MAP adapted speaker dependent models with SDL

6. Experiments and Results

The Speech Separation Challenge [1] involves separating the

mixed speech of two speakers drawn from of a set of 34 speakers.

An example utterance is place white by R 4 now. In each record-

ing, one of the speakers says white while the other says blue, red

or green. The task is to recognize the letter and the digit of the

speaker that said white.

We decoded the two component signals under the assumption

that one signal contains white and the other does not, and vice

versa. We then used the association that yielded the highest com-

bined likelihood.

Log-power spectrum features were computed at a 15 ms rate.

Each frame was of length 40 ms and a 640 point FFT was used

producing a 3195 dimensional log-power-spectrum feature vector.
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Figure 1: Word error rates for the a) Same Talker, b) Same Gender

and c) Different Gender cases.

5the DC component was discarded

6 dB 3 dB 0 dB -3 dB -6 dB -9dB All

ST 29 42 47 47 46 55 44.3

SG 8 10 13 13 15 30 14.8

DG 9 8 11 18 22 36 17.3

All 16.0 21.2 25.0 26.8 28.8 41.2 26.5

Table 3: Word error rates (percent) for grammar and acoustic con-

straints. ST-Same Talker, SG-Same Gender, DG-Different Gen-

der. Conditions where our system outperformed human listeners

are bolded.

Figure 1 shows results for the 3 different conditions. Human

listener performance [1] is shown along with the performance of

the SDL recognizer without separation, GMM without dynam-

ics, using acoustic level dynamics, and using both grammar and

acoustic-level dynamics.

The top plot in Figure 1 shows word error rates (WER) for the

Same Talker condition. In this condition, two recordings from the

same speaker are mixed together. This conditions best illustrates

the importance of temporal constrains. By adding the acoustic

dynamics, performance is improved considerably. By combin-

ing grammar and acoustic dynamics, performance improves again,

surpassing human performance in the −3 dB condition.
The second plot in Figure 1 shows WER for the Same Gender

condition. In this condition, recordings from two different speak-

ers of the same gender are mixed together. In this condition our

system surpasses human performance in all conditions except 6
dB and −9 dB.

The third plot in Figure 1 showsWER for the Different Gender

condition. In this condition, our system surpasses human perfor-

mance in the 0 dB and 3 dB conditions. Interestingly, temporal
constraints do not improve performance relative to GMM without

dynamics as dramatically as in the same talker case, which indi-

cates that the characteristics of the two speakers in a short segment

are effective for separation.
The performance of our best system, which uses both gram-

mar and acoustic-level dynamics, is summarized in Table 3. This
system surpassed human lister performance at SNRs of 0 dB and
−3 dB on average across all speaker conditions. Averaging across
all SNRs, the system surpassed human performance in the Same
Gender condition. Based on these initial results, we envision that
super-human performance over all conditions is within reach.
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  o Model individual speakers 
     (512 mix GMM)
  o Infer speakers and gain
  o Reconstruct speech
  o Recognize as normal...
•  Grammar constraints
   a big help

Kristjansson et al. 
Interspeech’06

w
er

 / 
%



VQ Source Models - Ellis & Weiss 2006-05-16 -    /12

Model-Based Separation
• Central idea:

Employ strong learned constraints
to disambiguate possible sources
{Si} = argmaxSi P(X | {Si})

• e.g. fit speech-trained Vector-Quantizer 
to mixed spectrum:

separate via T-F mask (again)
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Varga & Moore’90
Roweis’03...

MAXVQ Results: Denoising
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Separation or Description?
• Are isolated waveforms required?

clearly sufficient, but may not be necessary
not part of perceptual source separation!

• Integrate separation with application?
e.g. speech recognition

words output = abstract description of signal
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Evaluation
• How to measure separation performance?

depends what you are trying to do

• SNR?
energy (and distortions) are not created equal
different nonlinear components [Vincent et al. ’06]

• Intelligibility?
rare for nonlinear processing 
to improve intelligibility
listening tests expensive

• ASR performance?
separate-then-recognize too simplistic;
ASR needs to accommodate separation
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