Personal Audio Archives
Consumer MP3 players (e.g. iRiver T10) can also record continuously for over 12 hours on a single rechargable AA battery Easy to collect a "personal audio archive" of everything heard throughout the day .. but finding anything in the recordings can take close to real-time

- We are researching ways get useful information from this data e.g. automatic retrospective calendar of activities/locations
- Work so far addresses segmenting and clustering archives [Ellis \& Lee 06] works with time frames of $6 . .120$ sec
investigates best features to capture background ambience segmentation via BIC criterion (like speaker segmentation)

Spectrogram-like representation of 8 hour recording shows energy
(intensity), spectral flatness (saturation) and variance (hue) in 1 min windows .
cluster recurring ambiences/environments with spectral clustering

- This work looks for repeating foreground events based on fingerprinting repeating events may be relevant to user e.g. phone rings, theme songs
data-mining: repeats can be identified without user intervention (unlike exact repeats of [Johnson et al 00, Kashino et al 03, Herley 06]) Vision is for interactive browser/calendar displaying multiple sources of information gleaned from recordings and other sources

Sound Event Fingerprints

To find repeating events in the long-duration recordings, we use the fingerprinting technique from Shazam [Wang 02, 06]

Prominent peaks - landmarks - are selected in a spectrogram, thresholded to have a roughly constant rate in six frequency bands
Each landmark is paired with up to 9 neighbors nearby in time-frequency Each pair gives a combinatorial hash defined by the frequencies of the two landmarks and the time between them $\left\{f_{1}, f_{2}, \Delta t\right\}$

- quantizing each component to 6 bits gives $2^{18}(262,144)$ distinct hashes

An index file records the 2007-04-11-0839.idx
times when each hash 00|00100: 7012.45 11052.33 96384.28 occurs (a multi-hour 00100|01: 123.11 $125.8723004 .66 \quad 61993.83$ recording has an index of $<10 \mathrm{MB}$) $00|00| 02:$
$00|00| 03: 71552.34101663 .03$

Multiple hashes occurring around two time locations with the same relative timing indicate a repeated sound event

Key Advantages of Shazam Fingerprint:
No time framing to influence the hash (unlike [Burges et al 03, Herley 06]) Spectral peaks make hashes almost invariant to background noise
Missing any single hash does not preclude matching
Lower bound number of matching hashes allows precision/recall tradeoff

Finding Repeated Events

- To find possible earlier instances of events in current window: retrieve times of all earlier instances of current hashes (ast because store is indexed by hash value)
make a histogram of relative timings
ook for large peak \rightarrow repeated event . nearly constant time search

| ArchiveLength min) | 60 | 120 | 180 | 390 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Search time $($ ms | 21 | 31 | 37 | 131 |

Example

- Histogram of \# shared hashes in 5 sec windows for 30 min personal audio recording, with two instances of a phone ring and three plays of music recording "Song A".

Evaluation

| SNR/dB | 3 | -3 | -9 | -15 | -21 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Recall | 100% | 89% | 89% | 89% | 56% |

Exactly-repeating sounds (alarms, recordings) are detected well; "organic" sounds (speech, door closing) are not

Search for particular event (telephone ring) shows excellent resistance to background noise

References

[Burges et al 03] C.J.C. Burges, J.C. Platt, S. Jana "Distortion discriminant analysis for audio fingerprinting" IEEE Tr. Speech and Audio Proc., 11(3):165-174, 2003.
[Ellis \& Lee 06] D.P.W. Ellis and K. Lee "Accessing minimal-impact personal audio archives" IEE MultiMedia Magazine, 13(4):30-38, 2006
Herley 06] C. Herley "ARGOS: Automatically extracting repeating objects from multimedia streams" IEEE Tr. Multimedia, 8(1):115-129, 2006
[Johnson et al 00] S. Johnson \& P. Woodland "A Method for Direct Audio Search with Applications to Indexing and Retrieval" Proc. ICASSP, III:1427-1430, 2000.
KKashino et al 03] K. Kashino, T. Kurozumi, H. Murase "A quick search method for audio and video signals based on histogram pruning" IEEE Tr. Multimedia, 5(3):348-357, 2003.
[Wang 06] A. Wang "The Shazam strength audio search alg" Comm. ACM, 49(8):44-48, Aug 2006

