Chord Recognition and Segmentation using EM-trained Hidden Markov Models

- Chord Recognition
- EM-trained HMMs
- Experiments & Results

Alex Sheh & Dan Ellis {asheh79,dpwe}@ee.columbia.edu LObROSA, Columbia University

2003-10-29 - р. 1/19

Chord Transcription

 Basic problem: Recover chord sequence labels from audio

• Easier than note transcription ?

• More relevant to listener perception ?

2003-10-29 - р. 2/19

Difficulties with Chord Transcription

- Enharmonicity: Chord labels can be ambiguous
 - C# vs Db
- Many different chord classes
 - major, minor, 6th, 9th, ...
 - fold into 7 'main' classes:
 maj, min, maj7, min7, dom7, aug, dim
- Acoustic variability
 - chords are the same regardless of instrumentation

2003-10-29 - p. 3/19 Laboratory for the Recognition and Audio Consistence of Specific Market

Approaches to Chord Transcription

- Note transcription, then note \rightarrow chord rules
 - like labeling chords in MIDI transcripts
- Spectrum→chord rules
 - i.e. find harmonic peaks, use knowledge of likely notes in each chord
- Trained classifier
 - don't use any "expert knowledge"
 - instead, learn patterns from labeled examples

2003-10-29 - p. 4/19 Laboratory for the Recognition and

Statistical-Pattern-Recognition Chord Recognizer

• Use labeled training examples to estimate $p(x|\omega_i)$ for features x and chord class ω_i

 Use Bayes Rule to get posterior probabilities for each class given features:

$$p(\omega_i|x) = \frac{p(x|\omega_i) \cdot p(\omega_i)}{\sum_j p(x|\omega_j) \cdot p(\omega_j)}$$

2003-10-29 - р. 5/19 Т

Training Data Sources

- We need (lots of) examples of audio segments and the appropriate chord labels
 - Not widely available!
 - Even when you can get it, there is very little
- We could hand-mark a training set
 - painfully time-consuming!
- Can we generate it automatically?
 - we could, if we already had the chord transcriptions system working...

2003-10-29 - p. 6/19 ROSA

Speech Recognition Analogy

- Chord recognition is like word recognition
 - we are trying to recover a sequence of 'exclusive' labels associated with an audio stream
 - we have a lot of potential training audio, but no time labels
- Can we do what they do in ASR?
 - .. i.e. iterative re-estimation of models and labels using Expectation-Maximization
 - Need only label sequence, not timings (i.e. words or chords in order, no times)

2003-10-29 - _Р. 7/19

EM HMM Re-Estimation

- Estimate 'soft' labels using current models
- Update model parameters from new labels
- Repeat until convergence to local maximum

Chord Sequence Data Sources

- All we need are the chord sequences for our training examples
- OLGA Tab archives (http://www.olga.net/)?

• multiple authors, unreliable quality

- Hal Leonard "Paperback Song Series"
 - many Beatles songs, consistent detail
 - manually retyped for 20 songs:
 "Beatles for Sale", "Help", "Hard Day's Night"

Issues:

• repeats, intros, weird bits in the middle

2003-10-29 - p. 9/19 Laboratory for the Recognition and Organization of Speech and Audio

Experiments

- Preliminary investigations to see if this works
 - small database to get started
 - compare different feature sets
 - different ways to evaluate results
 - can we reintroduce a little high-level knowledge?

2003-10-29 - p.10/19 Laboratory for the Recognition and Organization of Speech and Audio

Training/Test Conditions

- Two training sets:
 - Train on 18 songs, test on 2 held-out songs (fair test)
 - Train on all 20 songs, test on 2 songs from training set (cheating, rewards over-fitting, upper bound)
- Two evaluation measures
 - Recognition: transcribe unknown chords
 - Forced alignment: find time boundaries given correct chord sequence
 - Score frame-level accuracy against hand-markings

2003-10-29 - p.11/19 ROS

ah

Features

- Can try any features with EM training...
- Use MFCCs as baseline
 - "the" feature in ASR, also useful in music IR
 - also try deltas, double deltas as in ASR
 - capture 'formants', not pitch straw man
- "Pitch Class Profile" features (Fujishima'99)
 - collapse FFT bin energies into (24) chroma bins
 - a/k/a Chroma Spectrum (Bartsch'01) ...

Averaging Rotated PCP Models

- Statistical system learns separate models for each of (7 chord types) x (21 roots)
 - models are means, variances of feature vectors
 - only 32 actually appear in our training set
 - even so, many have few training instances
- Expect similarity between e.g. Amaj & Bmaj
 - same chord, just shifted in frequency
 - shift = rotation of 24-bin chroma space
- Can align & average all transpositions of same chord after each training iteration

• then rotate back to starting chroma, continue...

aboratory for the Recog ization of Speech and Audic

Results: Recognition

• Models are not adequately discriminant:

Percent Frame Δ couracy: Recognition

I CICCIII I TAINE ACCUIACY. ICCOSIIIION								
Eastura	Recog							
reature	train18	train20	- Fight Davs a Week					
MFCC	5.9	16.7	Every Little Thing					
	7.7	19.6	LVELY LILLIE THING					
MECC D	15.8	7.6						
	1.5	6.9						
DCD	10.0	23.6						
er PCP	18.2	26.4						
	23.3	23.1						
PCP_ROT	20.1	13.1						
			-					
	(random ~3%)							
	Feature MFCC MFCC_D PCP PCP_ROT	Feature Reature Feature Reature MFCC 5.9 MFCC_D 15.8 MFCC_D 1.5 PCP 10.0 18.2 23.3 PCP_ROT 23.3	Feature Recog train18 train20 MFCC 5.9 16.7 MFCC_D 15.8 7.6 MFCC_D 1.5 6.9 PCP 10.0 23.6 PCP_ROT 23.3 23.1 20.1 13.1 (rand)					

2003-10-29 - p.14/19

Results: Alignment

Some glimmers of hope!

Percent Frame Accuracy: Forced Alignment

	Feeture	Al	ign	
	reature	train18	train20	Eight Davs a Week
	MECC	27.0	20.9	Every Little Thing
	IVII CC	14.5	23.0	LVCIY LICCIC IIIIIIg
	MECC D	24.1	13.1	
		19.9	19.7	
	рср	26.3	41.0	
	ICI	46.2	53.7	
PCP_ROI	PCP ROT	68.8	68.3	
best accuracy		83.3	83.8	

& best generalization

ah 2003-10-29 - p.15/19

> boratory for the Recognition and ganization of Speech and Audio

Chord Confusions

"E MAJOR" CONFUSION MATRIX Eight Days a Week										
	Maj	Min	Maj7	Min7	Dom7	Aug	Dim			
E/Fb	158	115		9						
E#/F	9									
F#/Gb				11						
G	3									
G#/Ab										
А	9				1					
A#/Bb										
B/Cb	8				,					
B#/C										
C#/Db		20								
D		14								
D#/Eb										

- Major/minor confusions
- C# is relative minor (shared notes)

2003-10-29 - p.16/19

What did the models learn?

• Chord model centers (means) indicate chord 'templates':

Recognition/Alignment Example

• A flavor of the features & results:

Chord Recognition - Sheh & Ellis

2003-10-29 - р.18/19

Lab

Conclusions & Future Work

 ASR-style EM is a viable approach for learning chord models

• more training data needed

• Better features

• capture 'global' properties of chords

• robust to fine tuning issues?

Better representation for training labels

• i.e. allow for extra repeats?

 More ways to reintroduce music knowledge

2003-10-29 - p.19/19 ROS

ar

boratory for the Recognition and ganization of Speech and Audio