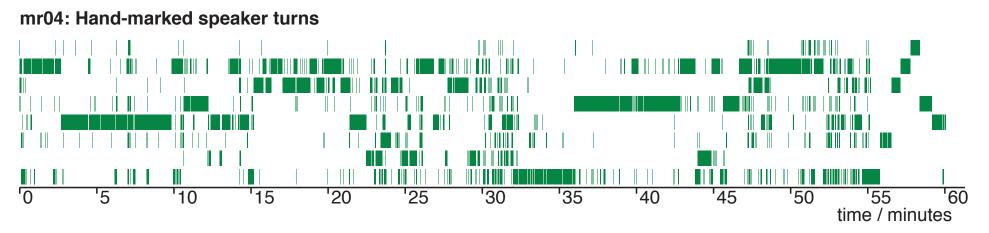
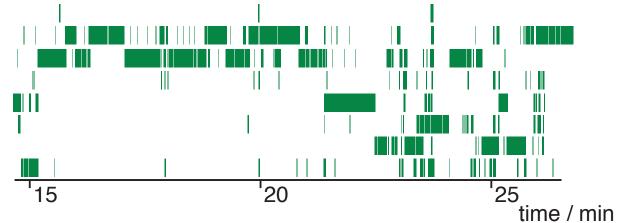
Modeling Meeting Turns

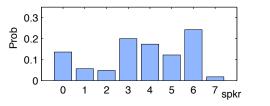
Dan Ellis <dpwe@ee.columbia.edu> LabROSA, Columbia University & ICSI

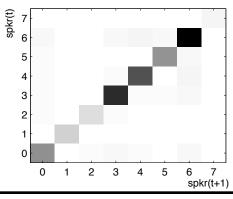

- Meeting turns visualization
- Turn-pattern segmentation
- 'Talkativity' modeling

Meeting Turn Visualization

• Speaker turns form patterns on multiminute timescales:


- Points of pattern change are 'significant'?
 - topics?
 - modes?

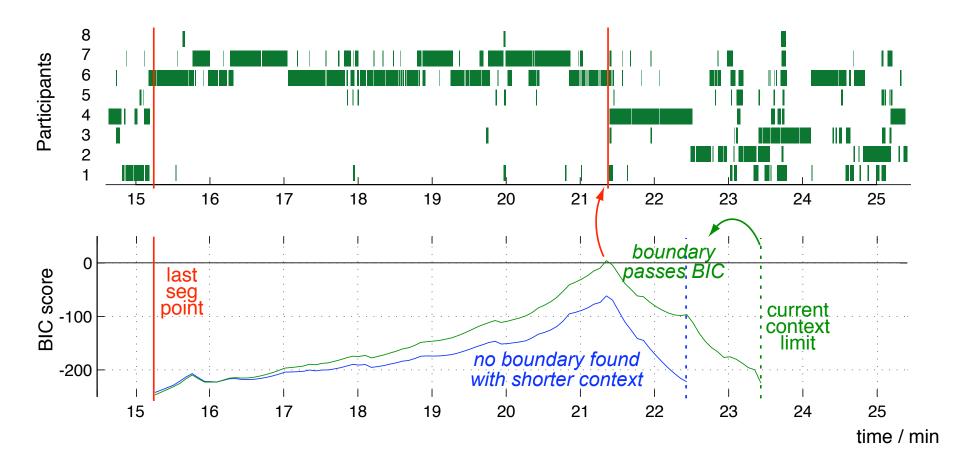

Modeling meeting segments


• Model speaker activity patterns like states

- Prior vector: $P(spkr^i)$
- 'Transition' matrix: $P(spkr_{t}^{i},spkr_{t-1}^{j})$

Self-similarity

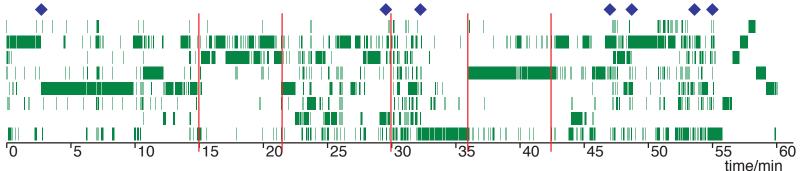
• **Display** $Dist(minute_i, minute_j)$ as KL distance of speaker distributions mr04: Self-sim of turn mxs by KL time/min 60 8 50 40 6 30 4 20 2 10 KL dist 40 20 60 time/min Lab m4 meeting - Dan Ellis 2003-01-29 Laboratory for the Recognition and Organization of Speech and Audio


BIC Segmentation

- BIC (Bayesian Information Criterion): Compare more and less complex models $\log \frac{L(X_1; M_1)L(X_2; M_2)}{L(X; M_0)} \gtrless \frac{\lambda}{2} \log(N) \Delta \#(M)$
- For segmentation:
 - Grow context window from current boundary
 - For each window, test every possible segmentation
 - When BIC is positive, mark new segment

BIC Segmentation

• Example of boundary finding:



2003-01-29 Laboratory for the Recognition and Organization of Speech and Audio

BIC Segmentation

• Appears to find shifts in turn patterns:

mr04: Hand-marked speaker turns vs. time + auto/manual boundaries

an

Laboratory for the Recognition and Organization of Speech and Audio

2003-01-29

- Evaluate against topic boundaries (6 meetings, 36 boundaries)
 - 15 (42%) agree to within \pm 2 minutes
 - 16 'false alarm' insertions

"Talkativity"

- Factors affecting how much one person speaks in a given meeting:

 - competition with other speakers -
 - innate tendency to talk "talkativity" T_s
- Model of expected 'airtime' consumed by each participant *s* in meeting *m*:

$$P_{sm} = \frac{T_s}{\sum_{t \in S_m} T_t}$$

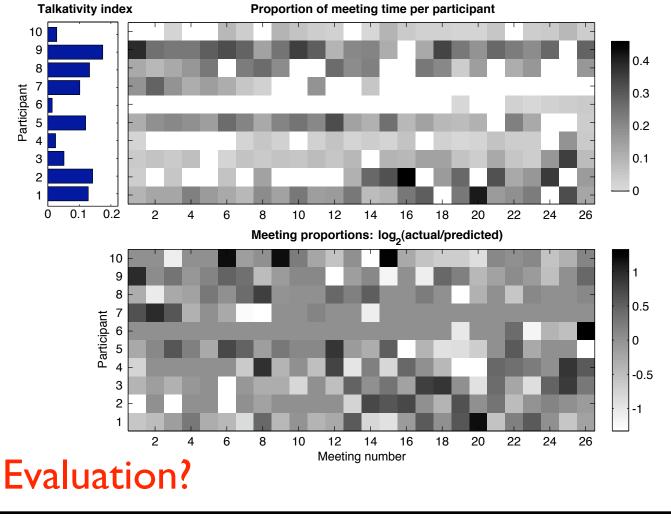
• given $\{T_s\}$, deviations from expected values factor out competition, baseline talkativity

confounding

Estimating "Talkativity"

• Find best-fitting $\{T_s\}$ to fit meeting set

$$T_s = avg_{m \in M_s} \frac{P_{sm} \sum_{t \in S_m, t \neq s} T_t}{1 - P_{sm}}$$


- Iteratively recalculate $\{T_s\}$ until (fast) convergence
- 26 meetings (mr* set), 10 common participants, avg 6.9 participants/meeting
- Calculate actual:predicted ratios

"Talkativity" Results

• Meeting proportions & ratio to prediction

m4 meeting - Dan Ellis

2003-01-29 Laboratory for the Recognition and Organization of Speech and Audio