Modeling Meeting Turns

Dan Ellis dpwe@ee.columbia.edu LabROSA, Columbia University \& ICSI

- Meeting turns visualization
- Turn-pattern segmentation
- 'Talkativity' modeling

Meeting Turn Visualization

- Speaker turns form patterns on multiminute timescales:
mr04: Hand-marked speaker turns

- Points of pattern change are ‘significant'?
- topics?
- modes?

Modeling meeting segments

- Model speaker activity patterns like states

- Prior vector:
$P\left(s p k r^{i}\right)$

- 'Transition’ matrix: $P\left(s p k r{ }_{t}{ }^{i} s p k r^{j}{ }_{t-1}\right)$

Self-similarity

- Display Dist(minute $_{i}$, minute $_{j}$) as KL distance of speaker distributions

BIC Segmentation

- BIC (Bayesian Information Criterion): Compare more and less complex models

$$
\log \frac{L\left(X_{1} ; M_{1}\right) L\left(X_{2} ; M_{2}\right)}{L\left(X ; M_{0}\right)} \gtrless \frac{\lambda}{2} \log (N) \Delta \#(M)
$$

- For segmentation:
- Grow context window from current boundary
- For each window, test every possible segmentation
- When BIC is positive, mark new segment

BIC Segmentation

- Example of boundary finding:

m4 meeting - Dan Ellis
2003-01-29

BIC Segmentation

- Appears to find shifts in turn patterns:

- Evaluate against topic boundaries (6 meetings, 36 boundaries)
- 15 (42\%) agree to within ± 2 minutes
- 16 'false alarm' insertions

"Talkativity"

- Factors affecting how much one person speaks in a given meeting:
o relevance/interest of topic to speaker \longleftarrow indexable
o competition with other speakers \longleftarrow confounding
o innate tendency to talk - "talkativity" T_{s}
- Model of expected 'airtime’ consumed by each participant s in meeting m :

$$
P_{s m}=\frac{T_{s}}{\sum_{t \in S_{m}} T_{t}}
$$

- given $\left\{T_{s}\right\}$, deviations from expected values factor out competition, baseline talkativity

Estimating "Talkativity"

- Find best-fitting $\left\{T_{s}\right\}$ to fit meeting set

$$
T_{s}=a v g_{m \in M_{s}} \frac{P_{s m} \sum_{t \in S_{m, t}} T_{s} T_{t}}{1-P_{s m}}
$$

- Iteratively recalculate $\left\{T_{s}\right\}$ until (fast) convergence
- 26 meetings (mr* set), 10 common participants, avg 6.9 participants/meeting
- Calculate actual:predicted ratios

"Talkativity" Results

- Meeting proportions \& ratio to prediction

Evaluation?

