Extracting Information from Music Audio

Dan Ellis

Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Engineering, Columbia University, NY USA

http://labrosa.ee.columbia.edu/

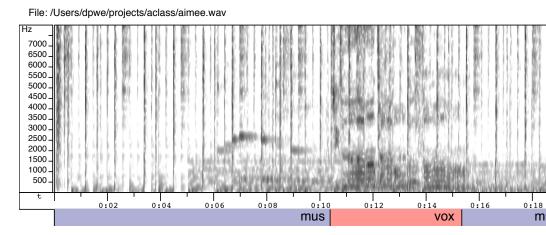
- Learning Music
- 2. Melody Extraction
- 3. Music Similarity

Learning from Music

- A lot of music data available
 - o e.g. 60G of MP3
 - ≈ 1000 hr of audio, 15k tracks
- What can we do with it?
 - o implicit definition of 'music'
- Quality vs. quantity
 - Speech recognition lesson:
 - 10x data, 1/10th annotation, twice as useful
- Motivating Applications
 - o music similarity / classification
 - o computer (assisted) music generation
 - o insight into music

Ground Truth Data

- A lot of unlabeled music data available
 - manual annotation is much rarer

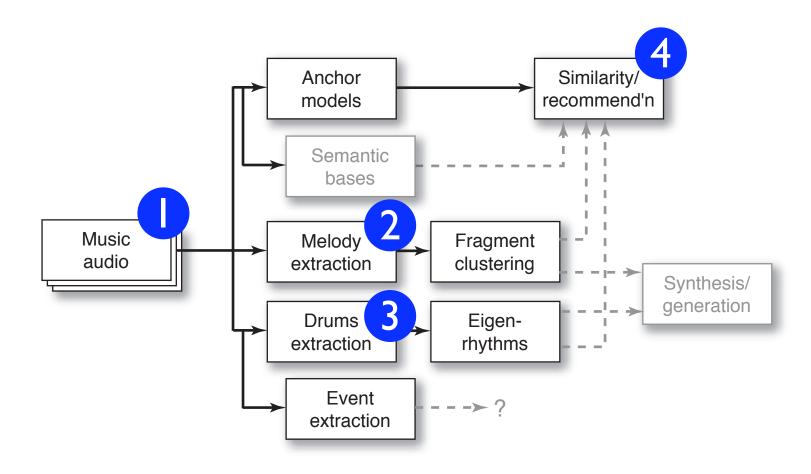


- Unsupervised structure discovery possible
 - o.. but labels help to indicate what you want
- Weak annotation sources
 - o artist-level descriptions
 - symbol sequences without timing (MIDI)
 - o errorful transcripts
- Evaluation requires ground truth
 - limiting factor in Music IR evaluations?

2005-09-20

p. 3/25

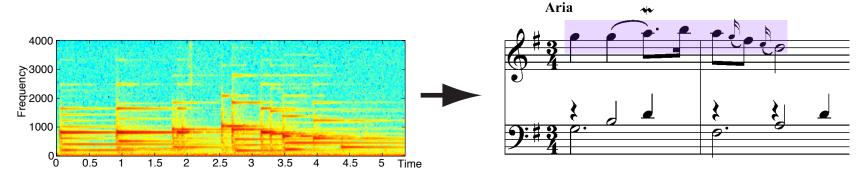
Talk Roadmap



2. Melody Transcription

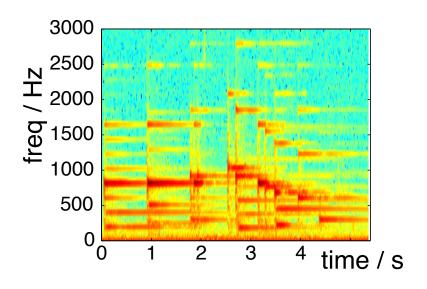
with Graham Poliner

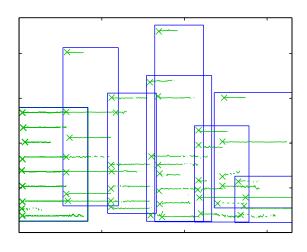
- Audio → Score very desirable
 - o for data compression, searching, learning
- Full solution is elusive
 - o signal separation of overlapping voices
 - music constructed to frustrate!
- Simplified problem:
 - "Dominant Melody" at each time frame



Conventional Transcription

- Pitched notes have harmonic spectra
 - → transcribe by searching for harmonics
 - O e.g. sinusoid modeling + grouping

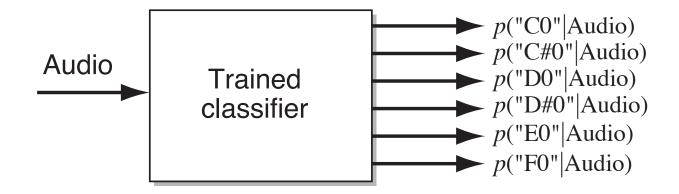




Explicit expert-derived knowledge

Transcription as Classification

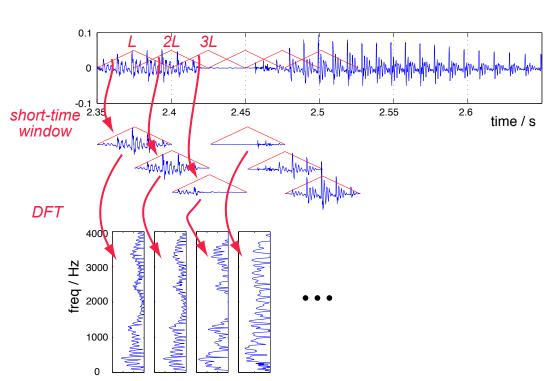
- Signal models typically used for transcription
 - o harmonic spectrum, superposition
- But ... trade domain knowledge for data
 - transcription as pure classification problem:

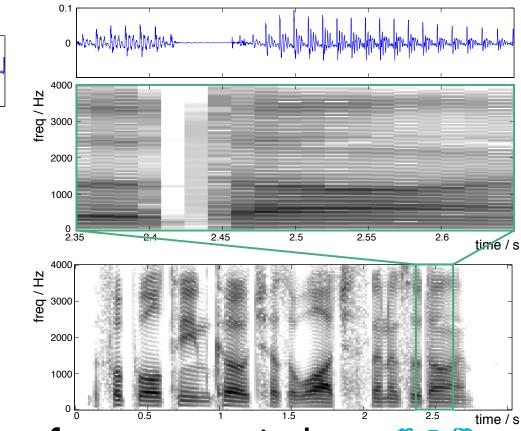


- o single N-way discrimination for "melody"
- oper-note classifiers for polyphonic transcription

Melody Transcription Features

Short-time Fourier Transform Magnitude (Spectrogram)





Standardize over 50 pt frequency window

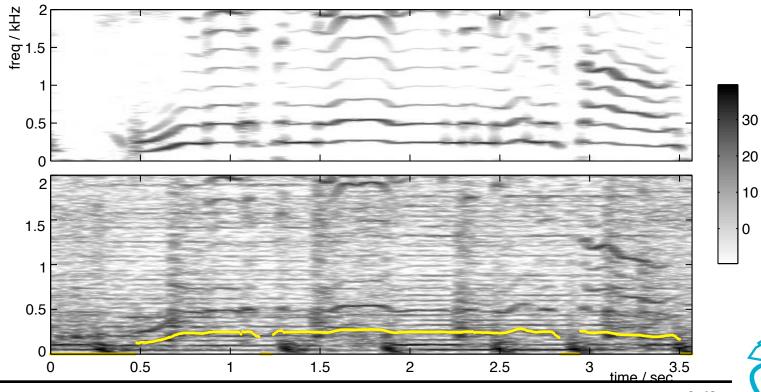
Music Info Extraction - Ellis

2005-09-20

p. 8/25

Training Data

- Need {data, label} pairs for classifier training
- Sources:
 - opre-mixing multitrack recordings + hand-labeling?
 - o synthetic music (MIDI) + forced-alignment?



Music Info Extraction - Ellis

2005-09-20

p. 9/2

Melody Transcription Results

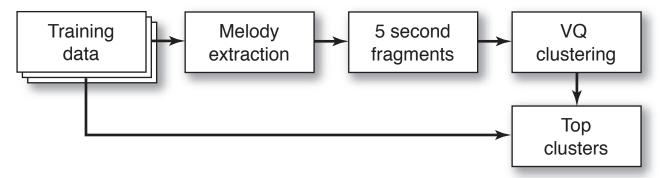
- Trained on 17 examples
 - n plus transpositions out to +/- 6 semitones
 - o SMO SVM (Weka)
- Tested on ISMIR MIREX 2005 set
 - o includes foreground/background detection

Rank	Participant	Overall Accuracy	Voicing d'	Raw Pitch	Raw Chroma	Runtime / s
1	Dressler	71.4%	1.85	68.1%	71.4%	32
2	Ryynänen	64.3%	1.56	68.6%	74.1%	10970
3	Paiva 2	61.1%	1.22	58.5%	62.0%	45618
3	Poliner	61.1%	1.56	(67.3%)	(73.4%)	5471
5	Marolt	59.5%	1.06	60.1%	67.1%	12461
6	Paiva 1	57.8%	0.83	62.7%	66.7%	44312
7	Goto	49.9%*	0.59*	65.8%	71.8%	211
8	Vincent 1	47.9%*	0.23*	59.8%	67.6%	?
9	Vincent 2	46.4%*	0.86*	59.6%	71.1%	251
10	Brossier	3.2%* †	0.14 * †	3.9% †	8.1% †	41

O Example...

Melody Clustering

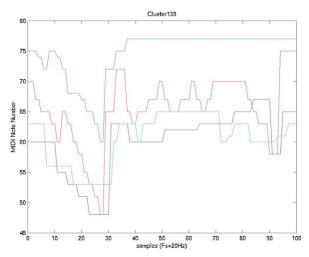
- Goal: Find 'fragments' that recur in melodies
 - across large music database
 - .. trade data for model sophistication

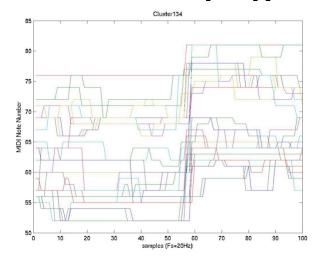


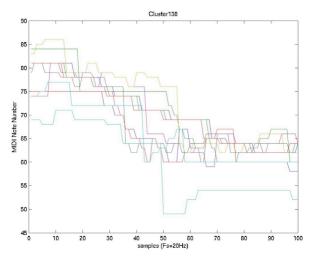
- Data sources
 - o pitch tracker, or MIDI training data
- Melody fragment representation
 - ODCT(1:20) removes average, smoothes detail

Melody clustering results

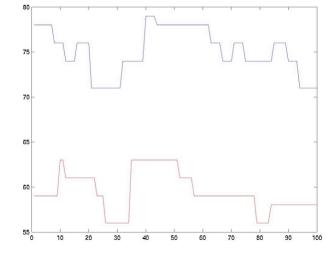
Clusters match underlying contour:







- Some interesting matches:
 - o e.g. Pink + Nsync



3. Music Similarity

with Mike Mandel and Adam Berenzweig

- Can we predict which songs "sound alike" to a listener?
 - .. based on the audio waveforms?
 - o many aspects to subjective similarity
- Applications
 - o query-by-example
 - o automatic playlist generation
 - O discovering new music
- **Problems**
 - the right representation
 - o modeling individual similarity

Music Similarity Features

Need "timbral" features: Mel-Frequency Cepstral Coeffs (MFCCs)

o auditory-like frequency warping

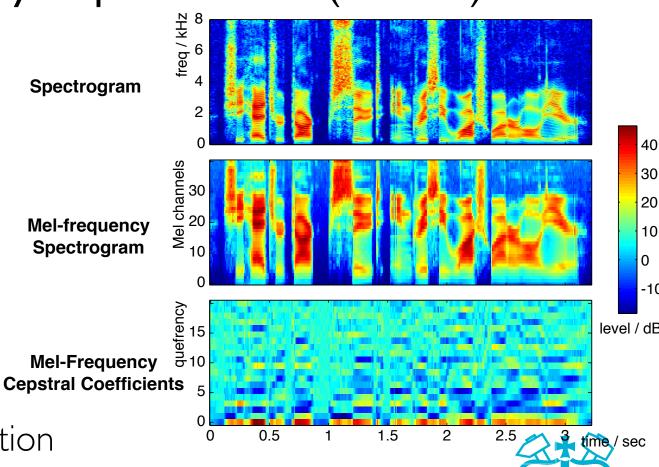
O log-domain

Spectrogram

Mel-frequency Spectrogram

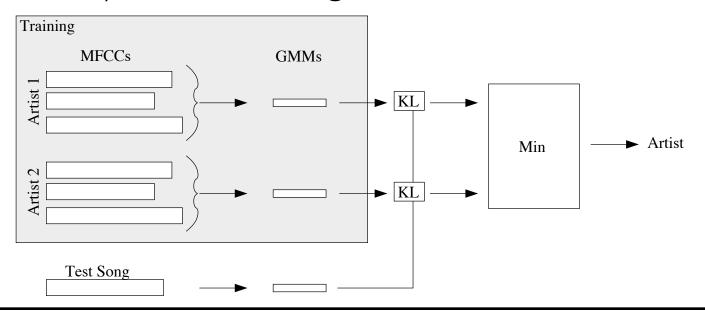
O discrete cosine transform

orthogonalization



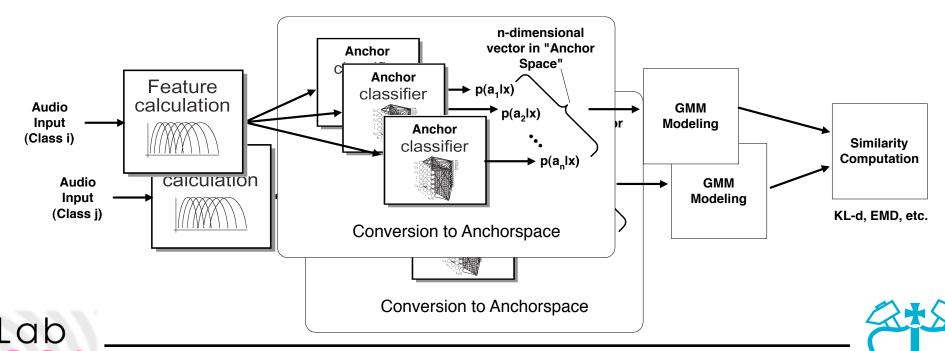
Timbral Music Similarity

- Measure similarity of feature distribution
 - \circ i.e. collapse across time to get density $p(x_i)$
 - o compare by e.g. KL divergence
- e.g. Artist Identification
 - \circ learn artist model $p(x_i \mid artist X)$ (e.g. as GMM)
 - o classify unknown song to closest model



"Anchor Space"

- Acoustic features describe each song
 - o.. but from a signal, not a perceptual, perspective
 - and not the differences between songs
- Use genre classifiers to define new space
 - oprototype genres are "anchors"



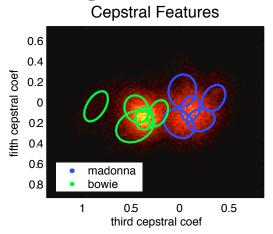
Laboratory for the Recognition and Organization of Speech and Audio

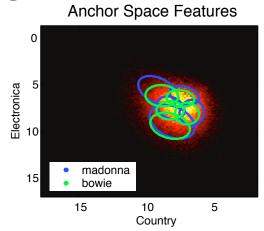
COLUMBIA UNIVERSITY

Anchor Space

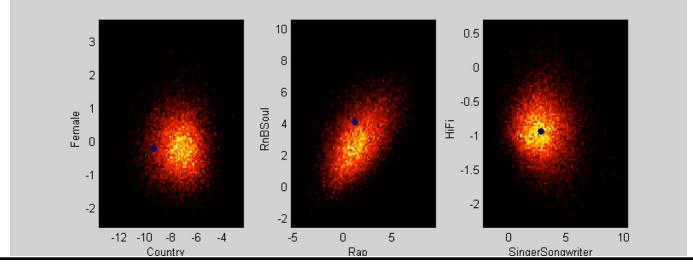
Frame-by-frame high-level categorizations

o compare to raw features?

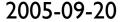




• properties in distributions? dynamics?



Music Info Extraction - Ellis



p. 17/25

'Playola' Similarity Browser

2005-09-20

p. 18/25

Ground-truth data

- Hard to evaluate Playola's 'accuracy'
 - o user tests...
 - oground truth?
- "Musicseer" online survey:
 - o ran for 9 months in 2002
 - \circ > 1,000 users, > 20k judgments
 - O http://labrosa.ee.columbia.edu/ projects/musicsim/

Which artist is most similar to: Janet Jackson?

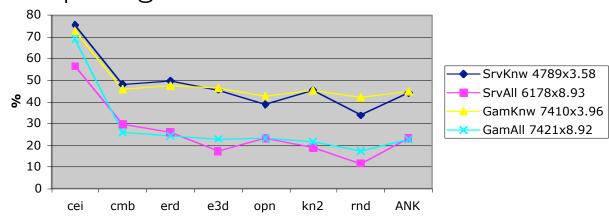
- 1. R. Kelly
- 2. Paula Abdul
- 3. Aaliyah
- 4. Milli Vanilli
- 5. En Vogue
- 6. Kansas
- 7. Garbage
- 8. Pink
- 9. Christina Aguilera

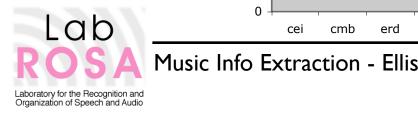
Evaluation

- Compare Classifier measures against Musicseer subjective results
 - o "triplet" agreement percentage
 - \circ Top-N ranking agreement score:

$$s_i = \sum_{r=1}^N \alpha_r^r \alpha_c^{k_r}$$
 $\alpha_r = \left(\frac{1}{2}\right)^{\frac{1}{3}}$ $\alpha_c = \alpha_r^2$

- First-place agreement percentage
 - simple significance test





2005-09-20

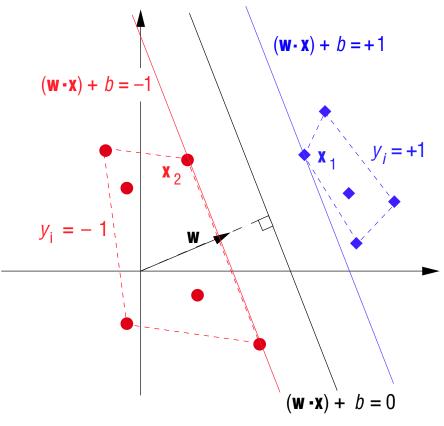
p. 20/25

Using SVMs for Artist ID

Support Vector Machines (SVMs) find hyperplanes in a high-dimensional space

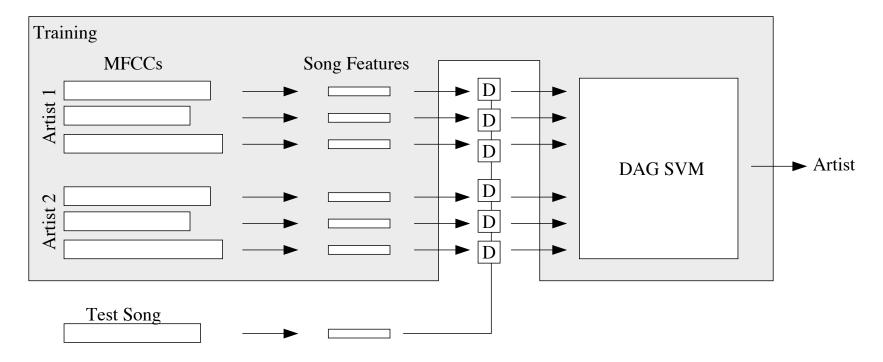
orelies only on matrix of distances between points

- O much 'smarter' than nearest-neighbor/overlap
- want diversity of reference vectors...



Song-Level SVM Artist ID

Instead of one model per artist/genre,
use every training song as an 'anchor'
then SVM finds best support for each artist

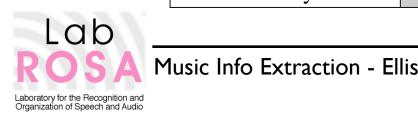


Artist ID Results

- ISMIR/MIREX 2005 also evaluated Artist ID
- 148 artists, 1800 files (split train/test) from 'uspop2002'
- Song-level SVM clearly dominates
 - o using only MFCCs!

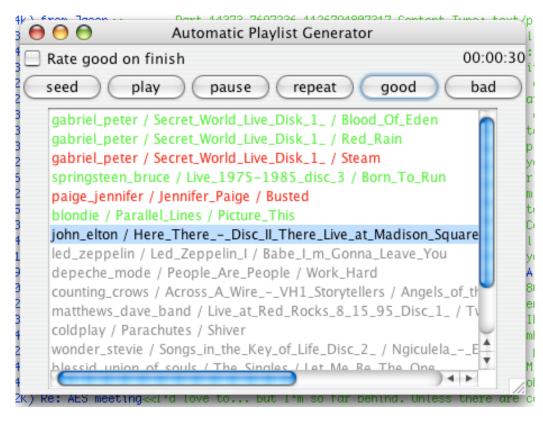
MIREX 05 Audio Artist (USPOP2002)

Rank	Participant	Raw Accuracy	Normalized	Runtime / s
1	Mandel	68.3%	68.0%	10240
2	Bergstra	59.9%	60.9%	86400
3	Pampalk	56.2%	56.0%	4321
4	West	41.0%	41.0%	26871
5	Tzanetakis	28.6%	28.5%	2443
6	Logan	14.8%	14.8%	?
7	Lidy	Did not co		

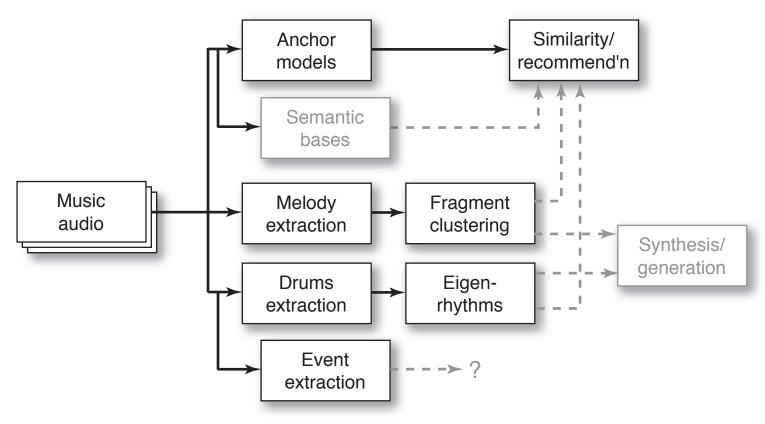


Playlist Generation

- SVMs are well suited to "active learning"
 - o solicit labels on items closest to current boundary
- Automatic player with "skip"
 - = Ground truth data collection
 - o active-SVM automatic playlist generation



Conclusions



- Lots of data
 - + noisy transcription
 - + weak clustering
 - ⇒ musical insights?

