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1. Learning from Music

• A lot of music data available
e.g. 60G of MP3 
≈ 1000 hr of audio, 15k tracks

• What can we do with it?
implicit definition of ‘music’

• Quality vs. quantity
Speech recognition lesson:
10x data, 1/10th annotation, twice as useful

• Motivating Applications
music similarity / classification
computer (assisted) music generation
insight into music
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Ground Truth Data

• A lot of unlabeled 
music data available
manual annotation is 
much rarer

• Unsupervised structure discovery possible
.. but labels help to indicate what you want

• Weak annotation sources
artist-level descriptions
symbol sequences without timing (MIDI)
errorful transcripts

• Evaluation requires ground truth
limiting factor in Music IR evaluations?
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2. Melody Transcription

• Audio → Score very desirable
for data compression, searching, learning

• Full solution is elusive
signal separation of overlapping voices
music constructed to frustrate!

• Simplified problem:
“Dominant Melody” at each time frame
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Conventional Transcription

• Pitched notes have harmonic spectra
→ transcribe by searching for harmonics
e.g. sinusoid modeling + grouping

• Explicit expert-derived knowledge

6
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Transcription as Classification

• Signal models typically used for transcription
harmonic spectrum, superposition

• But ... trade domain knowledge for data
transcription as pure classification problem:

single N-way discrimination for “melody”
per-note classifiers for polyphonic transcription

Trained
classifier

Audio
p("C0"|Audio)
p("C#0"|Audio)
p("D0"|Audio)
p("D#0"|Audio)
p("E0"|Audio)
p("F0"|Audio)
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Melody Transcription Features

• Short-time Fourier Transform Magnitude 
(Spectrogram)

• Standardize over 50 pt frequency window
8
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Training Data

• Need {data, label} pairs for classifier training
• Sources:

pre-mixing multitrack recordings + hand-labeling?
synthetic music (MIDI)  + forced-alignment?
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Melody Transcription Results
• Trained on 17 examples

.. plus transpositions out to +/- 6 semitones
SMO SVM (Weka)

• Tested on ISMIR MIREX 2005 set
includes foreground/background detection

Example...
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Melody Clustering

• Goal: Find ‘fragments’ that recur in melodies
.. across large music database
.. trade data for model sophistication

• Data sources
pitch tracker, or MIDI training data

• Melody fragment representation
DCT(1:20) - removes average, smoothes detail

Training
data

Melody
extraction

5 second
fragments

Top
clusters

VQ 
clustering
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Melody clustering results

• Clusters match underlying contour:

• Some interesting 
matches:
e.g. Pink + Nsync
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3. Music Similarity

• Can we predict which songs 
“sound alike” to a listener?
.. based on the audio waveforms?
many aspects to subjective similarity

• Applications
query-by-example
automatic playlist generation
discovering new music

• Problems
the right representation
modeling individual similarity

with Mike Mandel
and Adam Berenzweig
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Music Similarity Features

• Need “timbral” features:
Mel-Frequency Cepstral Coeffs (MFCCs)
auditory-like 
frequency 
warping

log-domain

discrete 
cosine 
transform 
orthogonalization
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Timbral Music Similarity
• Measure similarity of feature distribution

i.e. collapse across time to get density p(xi)
compare by e.g. KL divergence

• e.g. Artist Identification
learn artist model p(xi | artist X) (e.g. as GMM)
classify unknown song to closest model
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“Anchor Space”
• Acoustic features describe each song

.. but from a signal, not a perceptual, perspective

.. and not the differences between songs

• Use genre classifiers to define new space
prototype genres are “anchors”
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Anchor Space

• Frame-by-frame high-level categorizations
compare to
raw features?

properties in distributions? dynamics?
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‘Playola’ Similarity Browser
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Ground-truth data

• Hard to evaluate Playola’s ‘accuracy’
user tests...
ground truth?

• “Musicseer” online survey:
ran for 9 months in 2002
> 1,000 users, > 20k judgments
http://labrosa.ee.columbia.edu/
projects/musicsim/
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Evaluation
• Compare Classifier measures against 

Musicseer subjective results
“triplet” agreement percentage
Top-N ranking agreement score:

First-place agreement percentage
- simple significance test
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Using SVMs for Artist ID

• Support Vector Machines (SVMs) find  
hyperplanes in a high-dimensional space
relies only on matrix of 
distances between points
much ‘smarter’ than 
nearest-neighbor/overlap
want diversity of reference 
vectors...
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Song-Level SVM Artist ID

• Instead of one model per artist/genre, 
use every training song as an ‘anchor’
then SVM finds best support for each artist
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Artist ID Results

• ISMIR/MIREX 2005 also evaluated Artist ID
• 148 artists, 1800 files (split train/test)

from ‘uspop2002’
• Song-level SVM clearly dominates

using only MFCCs!

23

Table 4: Results of the formalMIREX 2005 Audio Artist ID evaluation (USPOP2002) from http://www.music-ir.

org/evaluation/mirex-results/audio-artist/.

Rank Participant Raw Accuracy Normalized Runtime / s

1 Mandel 68.3% 68.0% 10240

2 Bergstra 59.9% 60.9% 86400

3 Pampalk 56.2% 56.0% 4321

4 West 41.0% 41.0% 26871

5 Tzanetakis 28.6% 28.5% 2443

6 Logan 14.8% 14.8% ?

7 Lidy Did not complete
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Playlist Generation

• SVMs are well suited to “active learning”
solicit labels on items closest to current boundary

• Automatic player 
with “skip”
= Ground truth 
   data collection
active-SVM 
automatic playlist 
generation

24
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Conclusions

• Lots of data 
+ noisy transcription 
+ weak clustering
⇒ musical insights?
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