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1. Learning from Music

• A lot of music data available
e.g. 60G of MP3 
≈ 1000 hr of audio, 15k tracks

• What can we do with it?
implicit definition of ‘music’

• Quality vs. quantity
Speech recognition lesson:
10x data, 1/10th annotation, twice as useful

• Motivating Applications
music similarity (recommendation, playlists)
computer (assisted) music generation
insight into music
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Ground Truth Data

• A lot of unlabeled 
music data available
manual annotation is 
expensive and rare

• Unsupervised structure discovery possible
.. but labels help to indicate what you want

• Weak annotation sources
artist-level descriptions
symbol sequences without timing (MIDI)
errorful transcripts

• Evaluation requires ground truth
limiting factor in Music IR evaluations?
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2. Notes Extraction

• Audio → Score very desirable
for data compression, searching, learning

• Full solution is elusive
signal separation of overlapping voices
music constructed to frustrate!

• Maybe simplify problem:
“Dominant Melody” at each time frame

6
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Conventional Transcription

• Pitched notes have harmonic spectra
→ transcribe by searching for harmonics
e.g. sinusoid modeling + grouping

• Explicit expert-derived knowledge

7
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Spectrogram Modeling

 

• Sinusoid model
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Transcription as Classification

• Signal models typically used for transcription
harmonic spectrum, superposition

• But ... trade domain knowledge for data
transcription as pure classification problem:

single N-way discrimination for “melody”
per-note classifiers for polyphonic transcription

Trained
classifier

Audio
p("C0"|Audio)
p("C#0"|Audio)
p("D0"|Audio)
p("D#0"|Audio)
p("E0"|Audio)
p("F0"|Audio)
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Melody Transcription Features

• Short-time Fourier Transform Magnitude 
(Spectrogram)

• Standardize over 50 pt frequency window
9
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Training Data

• Need {data, label} pairs for classifier training
• Sources:

pre-mixing multitrack recordings + hand-labeling?
synthetic music (MIDI)  + forced-alignment?

10
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Table 1: Results of the formal MIREX 2005 Audio Melody Extraction evaluation from http://www.music-ir.

org/evaluation/mirex-results/audio-melody/. Results marked with * are not directly comparable to the

others because those systems did not perform voiced/unvoiced detection. Results marked † are artificially low due to an
unresolved algorithmic issue.

Rank Participant Overall Accuracy Voicing d′ Raw Pitch Raw Chroma Runtime / s

1 Dressler 71.4% 1.85 68.1% 71.4% 32

2 Ryynänen 64.3% 1.56 68.6% 74.1% 10970

3 Poliner 61.1% 1.56 67.3% 73.4% 5471

3 Paiva 2 61.1% 1.22 58.5% 62.0% 45618

5 Marolt 59.5% 1.06 60.1% 67.1% 12461

6 Paiva 1 57.8% 0.83 62.7% 66.7% 44312

7 Goto 49.9%* 0.59* 65.8% 71.8% 211

8 Vincent 1 47.9%* 0.23* 59.8% 67.6% ?

9 Vincent 2 46.4%* 0.86* 59.6% 71.1% 251

10 Brossier 3.2%* † 0.14 * † 3.9% † 8.1% † 41

STFT frame in the analysis of the synthesized audio.

1.4 Segmentation

Voiced/Unvoiced melody classification is performed by

simple energy thresholding. The sum of the magnitude

squared energy over the frequency range 200 < f <
1800 Hz is calculated for each 10 ms frame. Each frame
is normalized by the median energy value for the given

song, and segments are classified as voiced or unvoiced

with respect to a global threshold.

2 Results

The results of the formal MIREX 2005 Audio Melody

Extraction evaluation are show in table 1. While “Raw

Pitch” and “Raw Chroma” measure the accuracy of the

dominant melody pitch extraction (measured only over

the frames that were tagged as containing melody in the

ground truth, and where the latter ignores octave errors),

the “Overall Accuracy” combines pitch accuracy with cor-

rect detection of unvoiced frames; the “Voicing d′” figure
indicates the accuracy of the detection of frames that do or

do not contain melody (d′ is the separation between two
unit-variance Gaussians that would give the observed false

alarm and false reject rates for some choice of threshold).

Calculating statistical significance for these results is

tricky because the classification of individual 10 ms win-

dows is highly non-independent – in most cases, two

temporally-adjacent frames will correspond to virtually

identical classification problems. Each individual melody

note comes much closer to an independent trial: we esti-

mate that there are about 2000 such trials in the test set,

which consisted of 25 musical excerpts from a range of

styles of between 10 s and 40 s in length. Given this many

trials, and assuming the error rates remain the same at the

note level, a one-tailed binomial significance test requires

a difference in error rates of about 2.4% for significance

at the 5% level for results in this range. Thus, roughly,

for overall accuracy the performance differences between

the rank 1 (Dressler) and 2 (Ryynänen) systems are sig-

nificant, but the next three (including ours at rank 4) are

not significantly different. Raw pitch and chroma, how-

ever, give another picture: For pitch, our system is in a

three-way tie for top performance with the top two ranked

systems, and when octave errors are ignored we are in-

significantly worse than the best system (Ryynänen in this

case), and almost significantly better than the top-ranked

system of Dressler.

The fact that Dressler’s system performed best overall

even though it did not have the highest raw pitch accuracy

is because it combined high pitch accuracy with the best

voicing detection scheme, achieving the highest d′. Our
voicing detection scheme, which consisted of a simple

adaptive energy threshold, came in a joint second on this

measure. Because voicing errors lead to false negatives

(deletion of pitched frames) and false positives (insertion

of pitch values during non-melody times), this aspect of

the algorithm had a significant impact on overall perfor-

mance. Naturally, the systems that did not include a mech-

anism to distinguish between melody and accompaniment

(Goto, Vincent, and Brossier) scored much lower on over-

all accuracy despite, in some cases, raw pitch and chroma

performance very similar to the higher-ranked systems.

We note with some regret that our system failed to

score better overall than Paiva’s 2nd submission despite

exceeding it by a healthy margin on the other measures.

This paradoxical result is explained in part by the fact

that the voicing d′ is calculated from all frames pooled

together, whereas the other measures are averaged at the

level of the individual excerpts, giving greater weight to

the shorter excerpts. Paiva 2 did better than our system on

voicing detection in the shorter excerpts (which tended to

be the non-pop-music examples), thus compensating for

the worse performance on raw pitch. Also, although not

represented in the statistics of table 1, the voicing detec-

tion of Paiva 2 had an overall higher threshold (more false

negatives and fewer false positives), which turned out to

be a better strategy.

The final column in table 1 shows the execution time

in seconds for each algorithm. We see an enormous varia-

tion of more than 1000:1 between fastest and slowest sys-

tems – with the top-ranked system of Dressler also the

fastest! Our system is expensive, at almost 200 times

slower, but not as expensive as several of the others. The

evaluation, of course, did not place any emphasis on exe-

11

Melody Transcription Results
• Trained on 17 examples

.. plus transpositions out to +/- 6 semitones
All-pairs SVMs (Weka)

• Tested on ISMIR MIREX 2005 set
includes foreground/background detection

Example...
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Polyphonic Transcription

• Train SVM detectors for every piano note
same features & classifier but different labels
88 separate detectors, independent smoothing

• Use MIDI syntheses, player piano recordings

about 30 min training data

12
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Piano Transcription Results

• Significant improvement from classifier:
frame-level accuracy results:

Breakdown
by frame
type:

http://labrosa.ee.columbia.edu/projects/melody/
13

Table 1: Frame level transcription results.

Algorithm Errs False Pos False Neg d′

SVM 43.3% 27.9% 15.4% 3.44

Klapuri&Ryynänen 66.6% 28.1% 38.5% 2.71

Marolt 84.6% 36.5% 48.1% 2.35

• Overall Accuracy Acc: Overall accuracy is a frame-level version of the metric
proposed by Dixon in [Dixon, 2000] defined as:

Acc =
N

(FP + FN + N)
(3)

where N is the number of correctly transcribed frames, FP is the number of

unvoiced frames UV transcribed as voiced V , and FN is the number of voiced

frames transcribed as unvoiced.

• Error Rate Err: The unbounded error rate is defined as:

Err =
FP + FN

V
(4)

Additionally, we define the false positive rate FPR and false negative rate FNR
as FP/V and FN/V respectively.

• Discriminability d′: The discriminability is a measure of the sensitivity of a
detector that attempts to factor out the overall bias toward labeling any frame

as voiced (which can move both hit rate and false alarm rate up and down in

tandem). It converts the hit rate and false alarm into standard deviations away

from the mean of an equivalent Gaussian distribution, and reports the difference

between them. A larger value indicates a detection scheme with better discrimi-

nation between the two classes [Duda et al., 2001]

d′ = |Qinv(N/V )−Qinv(FP/UV )|. (5)

As displayed in Table 1, the discriminative model provides a significant perfor-

mance advantage on the test set with respect to frame-level transcription accuracy.

This result highlights the merit of a discriminative model for candidate note identi-

fication. Since the transcription problem becomes more complex with the number of

simultaneous notes, we have also plotted the frame-level classification accuracy versus

the number of notes present for each of the algorithms in the left panel of Figure 4, and

the classification error rate composition with the number of simultaneously occurring

notes for the proposed algorithm is displayed in right panel. As expected, there is an

inverse relationship between the number of notes present and the proportional contri-

bution of insertion errors to the total error rate. However, the performance degredation

of the proposed is not as significant as the harmonic-based models.
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3. Eigenrhythms: Drum Pattern Space

• Pop songs built on repeating “drum loop”
variations on a few bass, snare, hi-hat patterns

• Eigen-analysis (or ...) to capture variations?
by analyzing lots of (MIDI) data, or from audio

• Applications
music categorization
“beat box” synthesis
insight

with John Arroyo
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Aligning the Data
• Need to align patterns prior to modeling...

tempo (stretch): 
by inferring BPM & 

normalizing

downbeat (shift): 
correlate against 
‘mean’ template
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Eigenrhythms (PCA)

• Need 20+ Eigenvectors for good coverage 
of 100 training patterns (1200 dims)

• Eigenrhythms both add and subtract
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Posirhythms (NMF)

• Nonnegative: only adds beat-weight
• Capturing some structure
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Eigenrhythms for Classification
• Projections in Eigenspace / LDA space

• 10-way Genre classification (nearest nbr):
PCA3: 20% correct
LDA4: 36% correct
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Eigenrhythm BeatBox

• Resynthesize rhythms from eigen-space
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4. Music Similarity

• Can we predict which songs 
“sound alike” to a listener?
.. based on the audio waveforms?
many aspects to subjective similarity

• Applications
query-by-example
automatic playlist generation
discovering new music

• Problems
the right representation
modeling individual similarity

with Mike Mandel
and Adam Berenzweig
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Music Similarity Features

• Need “timbral” features:
Mel-Frequency Cepstral Coeffs (MFCCs)
auditory-like 
frequency 
warping

log-domain

discrete 
cosine 
transform 
orthogonalization

21
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Timbral Music Similarity
• Measure similarity of feature distribution

i.e. collapse across time to get density p(xi)
compare by e.g. KL divergence

• e.g. Artist Identification
learn artist model p(xi | artist X) (e.g. as GMM)
classify unknown song to closest model

22
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“Anchor Space”
• Acoustic features describe each song

.. but from a signal, not a perceptual, perspective

.. and not the differences between songs

• Use genre classifiers to define new space
prototype genres are “anchors”

23
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Anchor Space

• Frame-by-frame high-level categorizations
compare to
raw features?

properties in distributions? dynamics?
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‘Playola’ Similarity Browser
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Ground-truth data

• Hard to evaluate Playola’s ‘accuracy’
user tests...
ground truth?

• “Musicseer” online survey:
ran for 9 months in 2002
> 1,000 users, > 20k judgments
http://labrosa.ee.columbia.edu/
projects/musicsim/



Music Information Extraction - Ellis 2006-02-13 p.     /32

si =
N

∑
r=1

αrrα
kr
c αr =

(
1
2

)1
3

αc = α2r

Top rank agreement

0

10

20

30

40

50

60

70

80

cei cmb erd e3d opn kn2 rnd ANK

%

SrvKnw 4789x3.58

SrvAll 6178x8.93

GamKnw 7410x3.96

GamAll 7421x8.92

27

Evaluation
• Compare Classifier measures against 

Musicseer subjective results
“triplet” agreement percentage
Top-N ranking agreement score:

First-place agreement percentage
- simple significance test
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Using SVMs for Artist ID

• Support Vector Machines (SVMs) find  
hyperplanes in a high-dimensional space
relies only on matrix of 
distances between points
much ‘smarter’ than 
nearest-neighbor/overlap
want diversity of reference 
vectors...

28



(w  x) + b = –1
(w  x) + b = + 1

x 1

y

y i  = +1

w

(w  x) + b  = 0

x 2

i  = – 1



Music Information Extraction - Ellis 2006-02-13 p.     /32

Song-Level SVM Artist ID

• Instead of one model per artist/genre, 
use every training song as an ‘anchor’
then SVM finds best support for each artist

29
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Artist ID Results

• ISMIR/MIREX 2005 also evaluated Artist ID
• 148 artists, 1800 files (split train/test)

from ‘uspop2002’
• Song-level SVM clearly dominates

using only MFCCs!

30

Table 4: Results of the formalMIREX 2005 Audio Artist ID evaluation (USPOP2002) from http://www.music-ir.

org/evaluation/mirex-results/audio-artist/.

Rank Participant Raw Accuracy Normalized Runtime / s

1 Mandel 68.3% 68.0% 10240

2 Bergstra 59.9% 60.9% 86400

3 Pampalk 56.2% 56.0% 4321

4 West 41.0% 41.0% 26871

5 Tzanetakis 28.6% 28.5% 2443

6 Logan 14.8% 14.8% ?

7 Lidy Did not complete
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Playlist Generation

• SVMs are well suited to “active learning”
solicit labels on items closest to current boundary

• Automatic player 
with “skip”
= Ground truth 
   data collection
active-SVM 
automatic playlist 
generation

31
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Conclusions

• Lots of data 
+ noisy transcription 
+ weak clustering
⇒ musical insights?
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