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1.  Separation and Inference
2.  Model-based separation
3.  Speech Fragment Decoder
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1. Separation and Inference

• Full separation requires “separable dimension”
e.g. spatial filtering
but for single channel: overlap is inevitable

• Signal knowledge provides extra constraints
.. for inference of missing parts

• Separation vs. recognition
separation is sufficient .. but too hard
recognition is easier .. but too coarse
in-between: class plus parameters
                 adequate for resynthesis? 
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p(si|Mi)

Pattern Recognition Perspective

• Inferring source signal set {si} 

from mixture signal x:

                 gives physics of combination (sum)
                 limits which si to consider

• How to acquire/evaluate             ? 
generalize observation of solo sources

• How to search {si}?
full joint space?
clever pruning tricks

argmax
{ si}

p(x|{ si} ) Σ
i

p(si|Mi)

p(x|{ si} )

p(si|Mi)
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Factorial HMM - Toy Example

• Two sources with same underlying model

sequence constraints can disambiguate 
identical emissions
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Disambiguating with Knowledge
(Roweis ’03)

• Use strength of match to models as 
reasonableness measure for control

• e.g. MAXVQ
learn dictionary of spectrogram slices
find the ones that ‘fit’
- or max() of a combination....
... then filter out excess energy

Noise-corrupt speech

MAXVQ Results: Denoising
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Training: 300sec of isolated speech (TIMIT) to fit 512 codewords, and 100sec of
isolated noise (NOISEX) to fit 32 codewords; testing on new signals at 0dB SNR
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Full Mixture Inference
(Kristjansson, Attias, Hershey’04)

• Can model combination of magnitude 
spectra with stochastic model
phase cancellation as noise...

• Precise inference of 
components
by iterative linearization

• Works well 
(for small domains?)
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Trausti Kristjansson

Machine Learning and Applied Statistics
Microsoft Research

traustik@microsoft.com

John Hershey

University of California, San Diego
Machine Perception Lab

jhershey@cogsci.ucsd.edu

ABSTRACT

We present a framework for speech enhancement and ro-
bust speech recognition that exploits the harmonic structure
of speech. We achieve substantial gains in signal to noise ra-
tio (SNR) of enhanced speech as well as considerable gains
in accuracy of automatic speech recognition in very noisy
conditions.

The method exploits the harmonic structure of speech
by employing a high frequency resolution speech model in
the log-spectrum domain and reconstructs the signal from
the estimated posteriors of the clean signal and the phases
from the original noisy signal.

We achieve a gain in signal to noise ratio of 8.38 dB for
enhancement of speech at 0 dB. We also present recognition
results on the Aurora 2 data-set. At 0 dB SNR, we achieve
a reduction of relative word error rate of 43.75% over the
baseline, and 15.90% over the equivalent low-resolution al-
gorithm.

1. INTRODUCTION

A long standing goal in speech enhancement and robust
speech recognition has been to exploit the harmonic struc-
ture of speech to improve intelligibility and increase recog-
nition accuracy.

The source-filter model of speech assumes that speech
is produced by an excitation source (the vocal cords) which
has strong regular harmonic structure during voiced phonemes.
The overall shape of the spectrum is then formed by a fil-
ter (the vocal tract). In non-tonal languages the filter shape
alone determines which phone component of a word is pro-
duced (see Figure 2). The source on the other hand intro-
duces fine structure in the frequency spectrum that in many
cases varies strongly among different utterances of the same
phone.

This fact has traditionally inspired the use of smooth
representations of the speech spectrum, such as the Mel-
frequency cepstral coefficients, in an attempt to accurately
estimate the filter component of speech in a way that is in-
variant to the non-phonetic effects of the excitation[1].

There are two observations that motivate the consider-
ation of high frequency resolution modelling of speech for
noise robust speech recognition and enhancement. First is
the observation that most noise sources do not have har-
monic structure similar to that of voiced speech. Hence,
voiced speech sounds should be more easily distinguish-
able from environmental noise in a high dimensional signal
space1.
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Fig. 1. The noisy input vector (dot-dash line), the corre-
sponding clean vector (solid line) and the estimate of the
clean speech (dotted line), with shaded area indicating the
uncertainty of the estimate (one standard deviation). Notice
that the uncertainty on the estimate is considerably larger in
the valleys between the harmonic peaks. This reflects the
lower SNR in these regions. The vector shown is frame 100
from Figure 2

A second observation is that in voiced speech, the signal
power is concentrated in areas near the harmonics of the
fundamental frequency, which show up as parallel ridges in

1Even if the interfering signal is another speaker, the harmonic structure
of the two signals may differ at different times, and the long term pitch
contour of the speakers may be exploited to separate the two sources [2].

0-7803-7980-2/03/$17.00 © 2003 IEEE 291 ASRU 2003

!"#$

%
&$
'
(
$
)
*
+

, - . / 0 1 2 3 4 5 -,
,

-,,,

.,,,

/,,,

0,,,



Model-Based Scene Analysis - Dan Ellis 2005-06-30 -    /127

p(xk|M) =
Z
p(xk,xu|M)dxu

• Speech models p(x|M) are multidimensional... 
means, variances for each frequency channel 
need values for all dimensions to get p(•)

• But: can evaluate over a subset 
of dimensions xk
 

• Hence, missing data recognition: 

hard part is finding the mask (segregation) 
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2. Missing Data Recognition
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The Speech Fragment Decoder

• Match ‘uncorrupt’ 
spectrum to ASR 
models using 
missing data

• Joint search for model M and segregation S 
to maximize:

Barker, Cooke, Ellis ’04
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Using CASA cues

• CASA helps search
consider only segregations made from CASA 
chunks

• CASA rates segregation
construct P(S|Y) to reward CASA qualities:
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Learning for Separation

• Control: learn what is “reasonable”
• Input: discriminant features

learned subspaces

• Engine: clustering parameters
• Output: restoration...
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Can Machine Learning 
Subsume CASA?

• ASA grouping cues describe real sounds
.. “anecdotally”

• Machine Learning is another way to find 
regularities in large datasets
can, e.g., Roweis templates subsume harmonicity, 
onset, etc.?
... and handle schema at the same time?
“cut out the (grouping cue) middleman”

• Trick is how to represent/generalize
listeners can organize novel sounds
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Conclusions

• Source separation needs constraints
e.g. prior knowledge of signal form

• Memorized signals (HMMs) can be powerful
but can get very large

• Speech recognition models can be co-opted
e.g. to identify plausible subsets of regions


