Segmenting and Classifying Long-Duration Recordings of "Personal Audio"

Dan Ellis and Keansub Lee
Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Eng., Columbia Univ., NY USA
\{dpwe,kslee\}@ee.columbia.edu
"Personal Audio"
2. Features
3. Segmentation
4. Clustering
5. Future Work

Personal Audio

- Easy to record everything you hear - <2GB / week @ 64 kbps
- Very hard to find anything
o how to scan?
o how to visualize?
o how to index?

- Need automatic analysis

Applications

- Automatic appointment-book history
- fills in when \& where of movements
- "Life statistics"
- how long did I spend in meetings this week vs. last
- most frequent conversations
- favorite phrases??
- Retrieving details
- what exactly did I promise?
- privacy issues...
- Nostalgia?

Data Set

- Starting point: Collect data
- 62 hours recorded (8 days, $\sim 7.5 \mathrm{hr} /$ day)
- hand-mark 139 segments ($26 \mathrm{~min} / \mathrm{seg}$ avg.)
- assign to 16 classes (II have multiple instances)

Label	total mins	total segs
Library	981	27
Campus	750	56
Restaurant	560	5
Bowling	244	2
Lecture $~$	234	4
Car/Taxi	165	7
Street	162	16

Lab

2. Features

- Long duration recordings may benefit from longer basic time-frames
- 60s rather than 10 ms ?
- Perceptually-motivated features
o broad spectrum + some detail?
- For diary application...
- background more important than foreground?
o smooth out uncharacteristic transients

Feature sets

- Capture both average and variation
- Capture a little more detail in subbands...

Spectral Entropy

- Spectral entropy \approx 'peakiness' of each band:

$$
H[n, j]=-\sum_{k=0}^{N_{F}} \frac{w_{j k} X[n, k]}{A[n, j]} \cdot \log \left(\frac{w_{j k} X[n, k]}{A[n, j]}\right)
$$

3. BIC segmentation

- BIC (Bayesian Information Criterion): Compare more and less complex models

$$
\log \frac{L\left(X_{1} ; M_{1}\right) L\left(X_{2} ; M_{2}\right)}{L\left(X ; M_{0}\right)} \gtrless \frac{\lambda}{2} \log (N) \Delta \#(M)
$$

- For segmentation:
o Grow context window from current boundary
- For each window, test every possible segmentation
- When BIC is positive, mark new segment

BIC Segmentation Example

Segmentation Results

- Evaluate: 60 hr hand-marked boundaries
o different features \& combinations
- Correct Accept \% @ False Accept = 2\%:

Feature	Correct Accept
и夫в	80.8\%
$\mu+$	81.1\%
он/ин	81.6\%
$\mu \mathrm{dB}+\mathrm{\sigma H} / \mathrm{uH}^{\text {d }}$	84.0\%
$\mu \mathrm{dB}+\mathrm{\sigma H} / \mu^{\prime}+\mu^{\prime}$	83.6\%
avg. mfcc	73.6\%

4. Segment clustering

- Daily activity has lots of repetition: Automatically cluster similar segments
- 'affinity' of segments as KL2 distances

Lab

Spectral Clustering

- Eigenanalysis of affinity matrix: $A=U \cdot S \cdot V$ '

- eigenvectors v_{k} give cluster memberships
- Number of clusters?

Clustering Results

- Clustering of automatic segments gives 'anonymous classes'
- BIC criterion to choose number of clusters
- make best correspondence to 16 GT clusters

- Frame-level scoring gives $\sim 70 \%$ correct - errors when same 'place' has multiple ambiences - clusters formed by strong foregrounds (voices)

5. Future Work

- Visualization / browsing / diary inference - link in other information sources

Privacy

- Recording conversations conflicts with expectations of privacy
- critical barrier to progress
- Technical solutions to improve acceptance? Speaker/speech "search and destroy"
o scramble 100 ms segs of speech
(preserving longer-term statistics)
- high-confidence speaker ID to bypass

Conclusions

- "Personal Audio" is easy \& cheap to collect - but is it any use?
- Boundaries quite easy to spot
o moving to a new location
o change in activity (talking <> reading)
- Repeated activities can cluster together
- .. so user's labels can propagate
- Still gaining experience with the data
- speech is the most interesting part
- .. but very hard to transcribe
- speaker ID, privacy, ...

