Segmenting and Classifying Long-Duration Recordings of "Personal Audio"

Dan Ellis and Keansub Lee Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Eng., Columbia Univ., NY USA {dpwe,kslee}@ee.columbia.edu

- "Personal Audio"
- 2. Features
- 3. Segmentation
- 4. Clustering
- 5. Future Work

I. Personal Audio

- Easy to record everything you hear
 - <2GB / week @ 64 kbps
- Very hard to find anything
 - how to scan? how to visualize?
 - how to index?

• Need automatic analysis

2004-10-03

COLUMBIA UNIVERSITY

Applications

- Automatic appointment-book history
 - o fills in when & where of movements

• "Life statistics"

- how long did I spend in meetings this week vs. last
- most frequent conversations
- favorite phrases??

Retrieving details

- what exactly did I promise?
- o privacy issues...
- Nostalgia?

Data Set

- Starting point: Collect data
 - 62 hours recorded (8 days, ~7.5 hr/day)
 - hand-mark 139 segments (26 min/seg avg.)
 - assign to 16 classes (11 have multiple instances)

Label	total mins	total segs
Library	981	27
Campus	750	56
Restaurant	560	5
Bowling	244	2
Lecture I	234	4
Car/Taxi	165	7
Street	162	16

Segmenting Personal Audio - Ellis & Lee

2. Features

 Long duration recordings may benefit from longer basic time-frames
 60s rather than 10ms?

Perceptually-motivated features

- broad spectrum + some detail?
- For diary application...
 - background more important than foreground?
 - smooth out uncharacteristic transients

Feature sets

- Capture both average and variation
- Capture a little more detail in subbands...

Spectral Entropy

- Auditory spectrum: $A[n, j] = \sum_{k=0}^{N_F} w_{jk} X[n, k]$
- Spectral entropy ≈ 'peakiness' of each band:

$$H[n,j] = -\sum_{k=0}^{N_F} \frac{w_{jk}X[n,k]}{A[n,j]} \cdot \log\left(\frac{w_{jk}X[n,k]}{A[n,j]}\right)$$

COLUMBIA UNIVERSITY

Laboratory for the Recognition and Organization of Speech and Audio

_ap

3. BIC segmentation

- BIC (Bayesian Information Criterion): Compare more and less complex models $\log \frac{L(X_1; M_1)L(X_2; M_2)}{L(X; M_0)} \gtrless \frac{\lambda}{2} \log(N) \Delta \#(M)$
- For segmentation:
 - Grow context window from current boundary
 - For each window, test every possible segmentation
 - When BIC is positive, mark new segment

BIC Segmentation Example

2004-09-10-1023_AvgLEnergy

No training or stored models

Segmentation Results

- Evaluate: 60hr hand-marked boundaries
 - o different features & combinations
 - Correct Accept % @ False Accept = 2%:

4. Segment clustering

 Daily activity has lots of repetition: Automatically cluster similar segments
 o 'affinity' of segments as KL2 distances

Lab

Laboratory for the Recognition and Organization of Speech and Audio

COLUMBIA UNIVERSITY

Spectral Clustering

• Eigenanalysis of affinity matrix: A = U•S•V'

- o eigenvectors v_k give cluster memberships
- Number of clusters?

Lab

Laboratory for the Recognition and Organization of Speech and Audio Segmenting Personal Audio - Ellis & Lee

2004-10-03

+

COLUMBIA UNIVERSITY

Clustering Results

- Clustering of automatic segments gives 'anonymous classes'
 - BIC criterion to choose number of clusters
 - make best correspondence to 16 GT clusters

- Frame-level scoring gives ~70% correct
 - o errors when same 'place' has multiple ambiences
 - clusters formed by strong foregrounds (voices)

Segmenting Personal Audio - Ellis & Lee

_ab

Laboratory for the Recognition and Organization of Speech and Audio

5. Future Work

Visualization / browsing / diary inference o link in other information sources

Laboratory for the Recognition and Organization of Speech and Audio

Privacy

- Recording conversations conflicts with expectations of privacy
 o critical barrier to progress
- Technical solutions to improve acceptance? Speaker/speech "search and destroy"
 - scramble 100ms segs of speech (preserving longer-term statistics)
 - high-confidence speaker ID to bypass

Conclusions

- "Personal Audio" is easy & cheap to collect
 but is it any use?
- Boundaries quite easy to spot
 - moving to a new location
 - change in activity (talking <> reading)
- Repeated activities can cluster together
 - o .. so user's labels can propagate
- Still gaining experience with the data
 - speech is the most interesting part
 - .. but very hard to transcribe
 - o speaker ID, privacy, ...

2004-10-03

COLUMBIA I INIVERSIT