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1. Personal Audio

• Easy to record everything you hear
<2GB / week
@ 64 kbps

• Very hard to 
find anything
how to scan?
how to visualize?
how to index?

• Need automatic analysis
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Applications

• Automatic appointment-book history
fills in when & where of movements

• “Life statistics”
how long did I spend in meetings this week vs. last
most frequent conversations
favorite phrases??

• Retrieving details
what exactly did I promise?
privacy issues...

• Nostalgia?
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Data Set

• Starting point: Collect data
62 hours recorded (8 days, ~7.5 hr/day)
hand-mark 139 segments (26 min/seg avg.)
assign to 16 classes (11 have multiple instances)

Label total mins total segs
Library 981 27
Campus 750 56

Restaurant 560 5
Bowling 244 2

Lecture 1 234 4
Car/Taxi 165 7
Street 162 16
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2. Features

• Long duration recordings
may benefit from longer basic time-frames
60s rather than 10ms?

• Perceptually-motivated features
broad spectrum + some detail?

• For diary application...
background more important than foreground?
smooth out uncharacteristic transients
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Feature sets

• Capture both average and variation
• Capture a little more detail in subbands...
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Spectral Entropy

• Auditory spectrum:
•• Spectral entropy ≈  ‘peakiness’ of each band:
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3. BIC segmentation

• BIC (Bayesian Information Criterion):
Compare more and less complex models

• For segmentation:
Grow context window from current boundary
For each window, test every possible segmentation
When BIC is positive, mark new segment
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BIC Segmentation Example

• No training or stored models
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Segmentation Results
• Evaluate: 60hr hand-marked boundaries

different features & combinations
Correct Accept % @ False Accept = 2%:

µdB 80.8%
µH 81.1%

σH/µH 81.6%
µdB + σH/µH 84.0%

µdB + σH/µH + µH 83.6%
avg. mfcc 73.6%
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4. Segment clustering

• Daily activity has lots of repetition:
Automatically cluster similar segments
‘affinity’ of segments as KL2 distances
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Spectral Clustering

• Eigenanalysis of affinity matrix:  A = U•S•V’

eigenvectors vk give cluster memberships

• Number of clusters?
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Clustering Results

• Clustering of automatic segments gives 
‘anonymous classes’
BIC criterion to choose number of clusters
make best correspondence to 16 GT clusters

• Frame-level scoring gives ~70% correct
errors when same ‘place’ has multiple ambiences
clusters formed by strong foregrounds (voices)
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5. Future Work

• Visualization / browsing / diary inference
link in other information sources
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Privacy

• Recording conversations conflicts with 
expectations of privacy
critical barrier to progress

• Technical solutions to improve acceptance?
Speaker/speech “search and destroy”
scramble 100ms segs of speech
(preserving longer-term statistics)
high-confidence speaker ID to bypass
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Conclusions

• “Personal Audio” is easy & cheap to collect 
but is it any use?

• Boundaries quite easy to spot
moving to a new location
change in activity (talking <> reading)

• Repeated activities can cluster together
.. so user’s labels can propagate

• Still gaining experience with the data
speech is the most interesting part
- .. but very hard to transcribe
speaker ID, privacy, ...


