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1.  Music Similarity
2.  Beat-Synchronous Representations
3.  Cross-Correlation Similarity
4.  Subject Tests
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1. Music Similarity
• Goal: Computer predicts listeners’ 

judgments of music similarity
e.g. for playlists, 
new music discovery

• Conventional  approach
statistical models of broad spectrum (MFCCs)

• Evaluation?
MIREX: 2004 onwards
proxy tasks: Genre classification, artist ID ...
direct evaluation: subjects rate systems’ hits
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Which is more similar?
• “Waiting in Vain” 

by Bob Marley & the Wailers

• Different kinds of similarity
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2. Chroma Features
• Chroma features map spectral energy 

into one canonical octave
i.e. 12 semitone bins

• Can resynthesize as “Shepard Tones”
all octaves at once
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Beat-Synchronous Chroma Features
• Beat + chroma features / 30ms frames
→ average chroma within each beat
compact; sufficient?
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3. Cross Correlation
• Cross-correlate entire beat-feature matrices

... including all transpositions (for chroma)
implicit combination of match quality and duration

• One good matching fragment is sufficient...?
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Filtered Cross-Correlation
• Raw correlation not as important as precise 

local match
looking for large contrast at ±1 beat skew
i.e. high-pass filter

7

-500 -400 -300 -200 -100 0 100 200 300 400

0

0.2

0.4

0.6

-500 -400 -300 -200 -100 0 100 200 300 400 skew / beats

skew / beats

-5

0

+5

s
k
e

w
 /

 s
e

m
it
o

n
e

s Cross-correlation

Cross-correlation @ skew = +2 semitones

raw

filtered



Correlation Music Similarity - Ellis, Cotton, Mandel 2008-04-03 -    /15

Boundary Detection
• If we had landmarks, no need to correlate

save time - LSH implementation

• Use single Gaussian model likelihood ratio 
to find point of greatest contrast

8

50 100 150 200 250
0

10

20

30

40
Come Together - The Beatles - localchange3(48 beat window) + top10

time / sec

fre
q 

/ M
el 

ch
an

s



Correlation Music Similarity - Ellis, Cotton, Mandel 2008-04-03 -    /15

Correlation Matching System
• Based on cover song detection system
• Chroma and/or MFCC features

chroma for melodic/harmonic matching
MFCCs for for spectral/instrumental matching
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4. Experiments
• Subject data collected by listening tests

10 different algorithms/variants
binary similarity judgments
6 subjects x 30 queries = 180 trials per algorithm
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Baseline System
• From Mandel & Ellis MIREX’07

10 sec clips (from 8764 track uspop2002)
spectral and temporal paths

classification via SVM
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Results
• Traditional (baseline) system does best:

• Cross-correlation better than random...
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that assigns a single time anchor or boundary within each seg-
ment, then calculates the correlation only at the single skew
that aligns the time anchors. We use the BIC method [8] to
find the boundary time within the feature matrix that maxi-
mizes the likelihood advantage of fitting separate Gaussians
to the features each side of the boundary compared to fit-
ting the entire sequence with a single Gaussian i.e. the time
point that divides the feature array into maximally dissimi-
lar parts. While almost certain to miss some of the matching
alignments, an approach of this simplicity may be the only
viable option when searching in databases consisting of mil-
lions of tracks.

3. EXPERIMENTS AND RESULTS

The major challenge in developing music similarity systems
is performing any kind of quantitative analysis. As noted
above, the genre and artist classification tasks that have been
used as proxies in the past most likely fall short of accounting
for subjective similarity, particularly in the case of a system
such as ours which aims to match structural detail instead of
overall statistics. Thus, we conducted a small subjective lis-
tening test of our own, modeled after the MIREX music simi-
larity evaluations [4], but adapted to collect only a single sim-
ilar/not similar judgment for each returned clip (to simplify
the task for the labelers), and including some random selec-
tions to allow a lower-bound comparison.

3.1. Data

Our data was drawn from the uspop2002 dataset of 8764 pop-
ular music tracks. We wanted to work with a single, broad
genre (i.e. pop) to avoid confounding the relatively simple
discrimination of grossly different genres with the more sub-
tle question of similarity. We also wanted to maximize the
density of our database within the area of coverage.

For each track, we took a 10 s excerpt from 60 s into the
track (tracks shorter than this were not included). We chose
10 s based on our earlier experiments with clips of this length
that showed this is an adequate length for listeners to get a
sense of the music, yet short enough that they will probably
listen to the whole clip [9]. (MIREX uses 30 s clips which are
quite arduous to listen through).

3.2. Comparison systems

Our test involved rating ten possible matches for each query.
Five of these were based on the system described above: we
included (1) the best match from cross-correlating chroma
features, (2) from cross-correlating MFCCs, (3) from a com-
bined score constructed as the harmonic mean of the chroma
and MFCC scores, (4) based on the combined score but ad-
ditionally constraining the tempos (from the beat tracker) of
database items to be within 5% of the query tempo, and (5)

Table 1. Results of the subjective similarity evaluation.
Counts are the number of times the best hit returned by each
algorithm was rated as similar by a human rater. Each al-
gorithm provided one return for each of 30 queries, and was
judged by 6 raters, hence the counts are out of a maximum
possible of 180.

Algorithm Similar count
(1) Xcorr, chroma 48/180 = 27%
(2) Xcorr, MFCC 48/180 = 27%
(3) Xcorr, combo 55/180 = 31%
(4) Xcorr, combo + tempo 34/180 = 19%
(5) Xcorr, combo at boundary 49/180 = 27%
(6) Baseline, MFCC 81/180 = 45%
(7) Baseline, rhythmic 49/180 = 27%
(8) Baseline, combo 88/180 = 49%
Random choice 1 22/180 = 12%
Random choice 2 28/180 = 16%

combined score evaluated only at the reference boundary of
section 2.1. To these, we added three additional hits from a
more conventional feature statistics system using (6) MFCC
mean and covariance (as in [2]), (7) subband rhythmic fea-
tures (modulation spectra, similar to [10]), and (8) a simple
summation of the normalized scores under these two mea-
sures. Finally, we added two randomly-chosen clips to bring
the total to ten.

3.3. Collecting subjective judgments

We generated the sets of ten matches for 30 randomly-chosen
query clips. We constructed a web-based rating scheme, where
raters were presented all ten matches for a given query on a
single screen, with the ability to play the query and any of
the results in any order, and to click a box to mark any of the
returns as being judged “similar” (binary judgment). Each
subject was presented the queries in a random sequence, and
the order of the matches was randomized on each page. Sub-
jects were able to pause and resume labeling as often as they
wished. Complete labeling of all 30 queries took around one
hour total. 6 volunteers from our lab completed the labeling,
giving 6 binary votes for each of the 10 returns for each of the
30 queries.

3.4. Results

Table 1 shows the results of our evaluation. The binary sim-
ilarity ratings across all raters and all queries are pooled for
each algorithm to give an overall ‘success rate’ out of a possi-
ble 180 points – roughly, the probability that a query returned
by this algorithm will be rated as similar by a human judge.
A conservative binomial significance test requires a difference
of around 13 votes (7%) to consider two algorithms different.
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Examples - Baseline

13
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Examples - Xcorr Chroma
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Conclusions and Future Work
• Music similarity is complicated

no single, simple, signal-processing model

• Cross-correlation can detect ‘covers’
or similar melodic-harmonic content
how common is this in practice?

• Future work
finding common 8-24 beat ‘fragments’
better analysis of song structure

• Code available! 
Google “matlab cover songs”
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