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Human sound organization

 

• Analyzing and describing complex sounds:

 

- continuous sound mixture 

 

→

 

 distinct events

 

• Hearing is 

 

ecologically

 

 grounded

 

- reflects ‘natural scene’ properties
- subjective 

 

not

 

 canonical (ambiguity)
-

 

mixture

 

 analysis as primary goal
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Sound mixtures

 

• Sound ‘scene’ is almost always a mixture

 

- always stuff going on
- sound is ‘transparent’  - but big energy range

 

• Need information related to our ‘world model’

 

- i.e. separate objects
- a wolf howling in a blizzard is the same as 

a wolf howling in a rainstorm
- whole-signal statistics won’t do this

 

• ‘Separateness’ is similar to independence

 

- objects/sounds that change in isolation
- but: depends on the situation e.g.

passing car vs. mechanic’s diagnosis
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Auditory scene analysis

 

 

(Bregman 1990)

• How do people analyze sound mixtures?

 

- break mixture into small 

 

elements

 

 (in time-freq)
- elements are 

 

grouped

 

 in to sources using 

 

cues

 

- sources have aggregate 

 

attributes

 

• Grouping ‘rules ’ (Darwin, Carlyon, ...):

 

- cues: common onset/offset/modulation, 
harmonicity, spatial location, ...
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Cues to simultaneous grouping

 

• Elements + attributes

• Common onset

 

- simultaneous energy has common source

 

• Periodicity

 

- energy in different bands with same cycle

 

• Other cues

 

- spatial (ITD/IID), familiarity, ...
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The effect of context

 

• Context can create an ‘expectation ’: 
i.e. a bias towards a particular interpretation

• e.g. Bregman ’s “old-plus-new ” principle:

 

A change in a signal will be interpreted as an 

 

added

 

 source whenever possible

- a different division of the same energy 
depending on what preceded it
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Outline
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Computational Auditory Scene Analysis
(CASA)

 

• Goal: Automatic sound organization ;
Systems to ‘pick out ’ sounds in a mixture

 

- ... like people do

 

• E.g. voice against a noisy background

 

- to improve speech recognition

 

• Approach:

 

- psychoacoustics describes grouping ‘rules’
- ... just implement them?
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CASA front-end processing

 

• Correlogram:
Loosely based on known/possible physiology

 

- linear filterbank cochlear approximation
- static nonlinearity
- zero-delay slice is like spectrogram
- periodicity from delay-and-multiply detectors
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The Representational Approach

 

(Brown & Cooke 1993)

 

• Implement psychoacoustic theory

 

- ‘bottom-up’ processing
- uses common onset & periodicity cues

 

• Able to extract voiced speech:
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Problems with ‘bottom-up ’ CASA

 

• Circumscribing time-frequency elements

 

- need to have ‘regions’, but hard to find

 

• Periodicity is the primary cue

 

- how to handle aperiodic energy?

 

• Resynthesis via masked filtering

 

- cannot separate within a single t-f element

 

• Bottom-up leaves no ambiguity or context

 

- how to model illusions?
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Restoration in sound perception

 

• Auditory ‘illusions ’ = hearing what ’s not there

• The continuity illusion

• SWS

 

- duplex perception
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Adding top-down constraints

 

Perception is not 

 

direct

 

but a 

 

search

 

 for 

 

plausible hypotheses

 

• Data-driven (bottom-up)...

 

- objects irresistibly appear

 

vs. Prediction-driven (top-down)

 

- match observations 
with parameters of a world-model

- need world-model constraints...
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Aside: Optimal techniques (ICA, ABF)

 

(Bell & Sejnowski etc.)

• General idea:
Drive a parameterized separation algorithm to 
maximize independence of outputs

• Attractions:

 

- mathematically rigorous, minimal assumptions

 

• Problems:

 

- limitations of separation algorithm (N x N)
- essentially bottom-up
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Speech models & knowledge

• Standard speech recognition

• ‘State of the art’ word-error rates (WERs):
- 2% (dictation) - 30% (telephone conversations)
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Speech units

• Speech is highly variable
- simple templates won’t do
- spectral variation (voice quality)
- time-warp problems

• Match short segments (states), allow repeats
- model with pseudo-stationary slices of ~ 10 ms

• Speech models are distributions 
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Speech features:  Cepstra

• Idea: Decorrelate & summarize spectral slices:

- easier to model:

- C0 ‘normalizes out’ average log energy

• Decorrelated pdfs fit diagonal Gaussians
- DCT is close to PCA for log spectra
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Acoustic model training

• Goal: describe  with e.g. GMMs

• Training data labels from:
- manual phonetic annotation
- ‘best path’ from earlier classifier (Viterbi)
- EM: joint estimation of labels & pdfs

p X q( )
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training
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HMM decoding

• Feature vectors cannot be reliably classified 
into phonemes

• Use top-down constraints to get good results
- allowable phonemes
- dictionary of known words
- grammar of possible sentences

• Decoder searches all possible state sequences
- at least notionally; pruning makes it possible
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Sound mixture recognition

• Biggest problem in speech recognition is 
background noise interference

• Feature invariance approach
- use features that reflect only speech
- e.g. normalization, mean subtraction
- but: non-static noise?

• Or: more complex models of the signal
- HMM decomposition
- missing-data recognition

• Generalize to other,  multiple sounds

4
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Feature normalization

• Idea: feature variations, not absolute level

• Hence: calculate average level & subtract it:

• Factors out fixed channel frequency response:

• Normalize variance to handle added noise?
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HMM decomposition
(e.g. Varga & Moore 1991, Roweis 2000)

• Total signal model has independent state 
sequences for 2+ component sources

• New combined state space q' = {q1 q2}

- new observation pdfs for each combination

model 1

model 2 

observations / time

p X
i

q1
i
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Problems with HMM decomposition

• O(qk)
N is exponentially large...

• Normalization no longer holds!
- each source has a different gain

→ model at various SNRs?
- models typically don’t use overall energy C0

- each source has a different channel H[k]

• Modeling every possible sub-state combination 
is inefficient, inelegant and impractical
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Missing data recognition
(Cooke, Green, Barker @ Sheffield)

• Energy overlaps in time-freq. hide features
- some observations are effectively missing

• Use missing feature theory...
- integrate over missing data xm under model M

• Effective in speech recognition

• Problem: finding the missing data mask
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Maximum-likelihood data mask
(Jon Barker @ Sheffield)

• Search of sound-fragment interpretations

• Decoder searches over data mask K:

- how to estimate p(K)

"1754" + noise

Common Onset/Offset

Multisource
Decoder

Spectro-Temporal Proximity

Mask split into subbands

stationary noise estimate

`Grouping' applied within bands:
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Multi-source decoding

• Search for more than one source

• Mutually-dependent data masks

• Use CASA processing to propose masks
- locally coherent regions
- p(K|q)

• Theoretical vs. practical limits
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General sound mixtures

• Search for generative explanation:
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Outline

Human sound organization

Computational Auditory Scene Analysis

Speech models and knowledge

Sound mixture recognition

Opportunities for learning
- learnable aspects of modeling
- tractable decoding
- some examples

1

2

3

4

5



Lab
ROSA

Sound, mixtures, learning @ Snowbird - Dan Ellis 2002-04-04 - 31

Opportunities for learning

• Per model feature distributions  

- e.g. analyzing isolated sound databases

• Channel modifications 

- e.g. by comparing multi-mic recordings

• Signal combinations 

- determined by acoustics

• Patterns of model combinations 

- loose dependence between sources

• Search for most likely explanations

• Short-term structure: repeating events

5
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Source models

• The speech recognition lesson:
Use the data as much as possible
- what can we do with unlimited data feeds?

• Data sources
- clean data corpora
- identify near-clean segments in real sound

• Model types
- templates
- parametric/constraint models
- HMMs



Lab
ROSA

Sound, mixtures, learning @ Snowbird - Dan Ellis 2002-04-04 - 33

What are the HMM states?

• No sub-units defined for nonspeech sounds

• Final states depend on EM initialization
- labels
- clusters
- transition matrix

• Have ideas of what we’d like to get
- investigate features/initialization to get there
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Tractable decoding

• Speech decoder notionally searches all states

• Parametric models give infinite space
- need closed-form partial explanations
- examine residual, iterate, converge

• Need general cues to get started
- return to Auditory Scene Analysis:

- onsets
- harmonic patterns

- then parametric fitting

• Need multiple hypothesis search, 
pruning, efficiency tricks

• Learning? 
Parameters for new source events
- e.g. from artificial (hence labeled) mixtures
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Example: Alarm sound detection

• Alarm sounds have particular structure
- people ‘know them when they hear them’

• Isolate alarms in sound mixtures

- sinusoid peaks have invariant properties

• Learn model parameters from examples
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Example: Music transcription
(e.g. Masataka Goto)

• High-quality training material:
Synthesizer sample kits

• Ground truth available:
Musical scores

• Find ML explanations for scores
- guide by multiple pitch tracking (hyp. search)

• Applications in similarity matching
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Summary

• Sound contains lots of information
... but it’s always mixed up

• Psychologists describe ASA
... but bottom-up computer models don’t work

• Speech recognition works for isolated speech
... by exploiting top-down, context constraints

• Speech in mixtures via multiple-source models
... practical combinatorics are the main problem

• Generalize this idea for all sounds
... need models of ‘all sounds’
... plus models of channel modification
... plus ways to propose segmentations
... plus missing-data recognition
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Further reading
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ftp://ftp.icsi.berkeley.edu/pub/speech/papers/icslp00-msd.pdf

[Breg90] A.S. Bregman (1990). Auditory Scene Analysis: the perceptual organi-
zation of sound, MIT Press.

[Chev00] A. de Cheveigné (2000).  “The Auditory System as a Separation 
Machine,” Proc. Intl. Symposium on Hearing.
http://www.ircam.fr/pcm/cheveign/sh/ps/ATReats98.pdf

[CookE01] M. Cooke, D. Ellis (2001). “The auditory organization of speech and 
other sources in listeners and computational models,” Speech Commu-
nication (accepted for publication).
http://www.ee.columbia.edu/~dpwe/pubs/tcfkas.pdf

[Ellis99] D.P.W. Ellis (1999). “Using knowledge to organize sound: The predic-
tion-driven approach to computational auditory scene analysis...,” 
Speech Communications 27.
http://www.ee.columbia.edu/~dpwe/pubs/spcomcasa98.pdf

[Roweis00] S. Roweis (2000). “One microphone source separation.,” Proc. NIPS 
2000.
http://www.ee.columbia.edu/~dpwe/papers/roweis-nips2000.pdf
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