Sound, Mixtures, and Learning

Dan Ellis <dpwe@ee.columbia.edu>

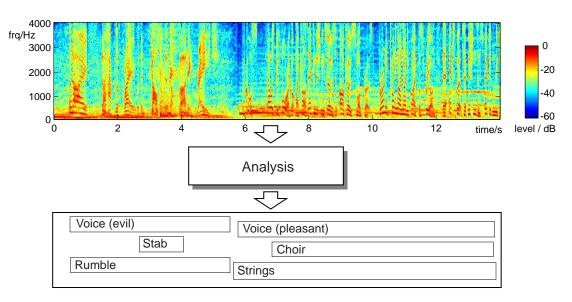
Laboratory for Recognition and Organization of Speech and Audio (LabROSA) Electrical Engineering, Columbia University

http://labrosa.ee.columbia.edu/

Outline

- 1 Human sound organization
- **2** Computational Auditory Scene Analysis
- **3** Speech models and knowledge
- **4** Sound mixture recognition
- 5 Learning opportunities

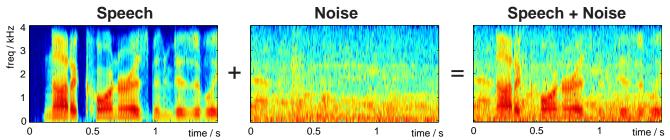
Human sound organization



- Analyzing and describing complex sounds:
 - continuous sound mixture \rightarrow distinct events
- Hearing is ecologically grounded
 - reflects 'natural scene' properties
 - subjective not canonical (ambiguity)
 - mixture analysis as primary goal

Sound mixtures

- Sound 'scene' is almost always a mixture
 - always stuff going on
 - sound is 'transparent' but big energy range



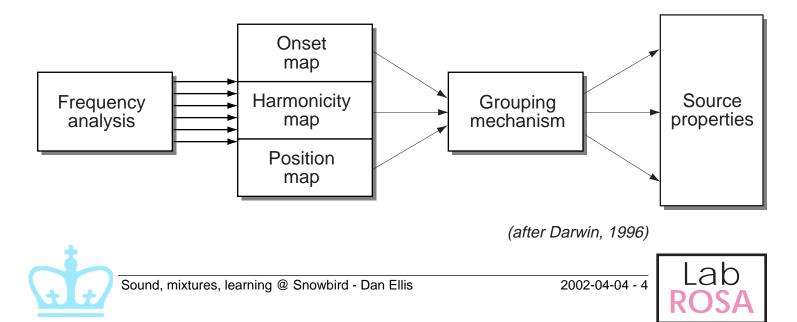
- Need information related to our 'world model'
 - i.e. separate objects
 - a wolf howling in a blizzard is the same as a wolf howling in a rainstorm
 - whole-signal statistics won't do this
- 'Separateness' is similar to independence
 - objects/sounds that change in isolation
 - but: depends on the situation e.g. passing car vs. mechanic's diagnosis

Auditory scene analysis (Bregman 1990)

- How do people analyze sound mixtures?
 - break mixture into small elements (in time-freq)
 - elements are grouped in to sources using cues
 - sources have aggregate attributes

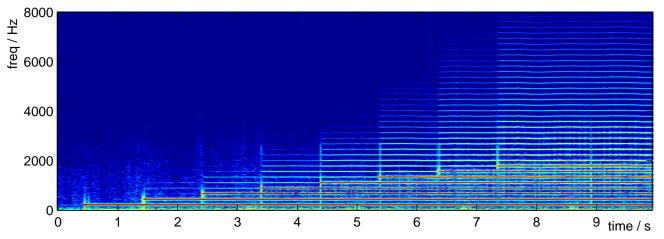
• Grouping 'rules' (Darwin, Carlyon, ...):

- cues: common onset/offset/modulation, harmonicity, spatial location, ...



Cues to simultaneous grouping

• Elements + attributes

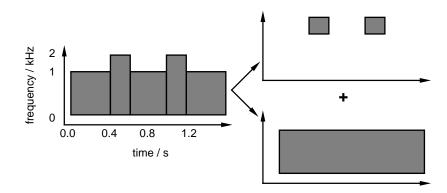


Common onset

- simultaneous energy has common source
- Periodicity
 - energy in different bands with same cycle
- Other cues
 - spatial (ITD/IID), familiarity, ...

The effect of context

- Context can create an 'expectation': i.e. a bias towards a particular interpretation
- e.g. Bregman's "old-plus-new" principle:
 - A change in a signal will be interpreted as an *added* source whenever possible



- a different division of the same energy depending on what preceded it

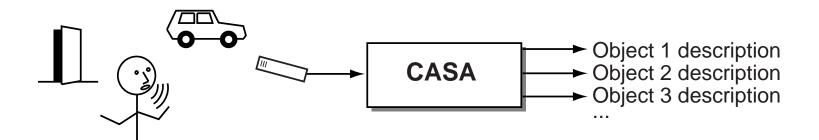
Outline

1 Human sound organization

2 Computational Auditory Scene Analysis

- sound source separation
- bottom-up models
- top-down constraints
- **3** Speech models and knowledge
 - Sound mixture recognition
- **5** Learning opportunities

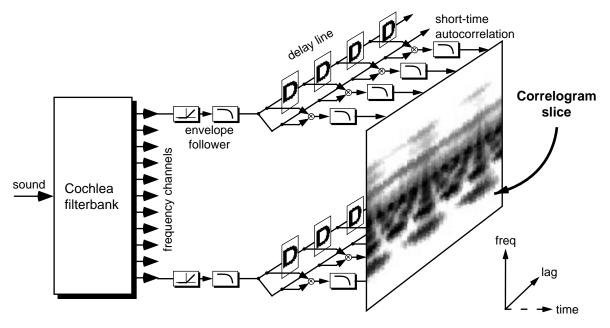
2Computational Auditory Scene Analysis (CASA)



- Goal: Automatic sound organization ; Systems to 'pick out' sounds in a mixture
 - ... like people do
- E.g. voice against a noisy background
 - to improve speech recognition
- Approach:
 - psychoacoustics describes grouping 'rules'
 - ... just implement them?

CASA front-end processing

 Correlogram: Loosely based on known/possible physiology

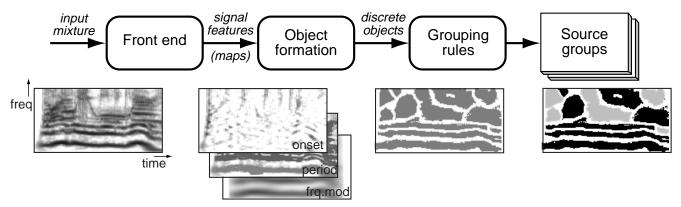


- linear filterbank cochlear approximation
- static nonlinearity
- zero-delay slice is like spectrogram
- periodicity from delay-and-multiply detectors

The Representational Approach

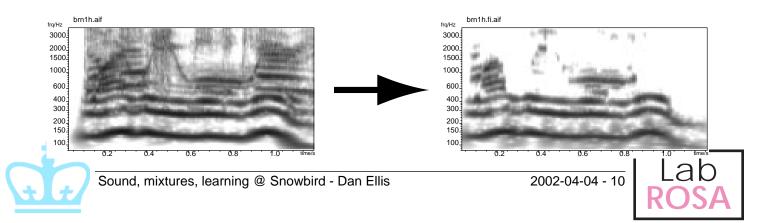
(Brown & Cooke 1993)

Implement psychoacoustic theory



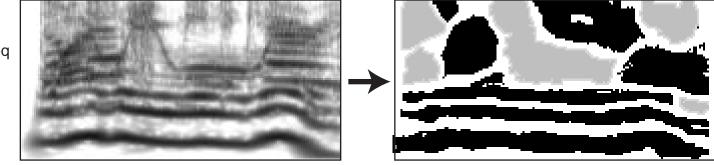
- 'bottom-up' processing
- uses common onset & periodicity cues

Able to extract voiced speech:



Problems with 'bottom-up' CASA

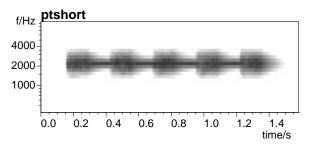
freq



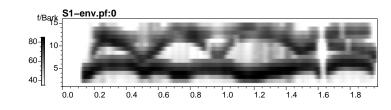
- Circumscribing time-frequency elements
 - need to have 'regions', but hard to find
- Periodicity is the primary cue
 - how to handle aperiodic energy?
- Resynthesis via masked filtering
 - cannot separate within a single t-f element
- Bottom-up leaves no ambiguity or context
 - how to model illusions?

Restoration in sound perception

- Auditory 'illusions' = hearing what's not there
- The continuity illusion



• SWS

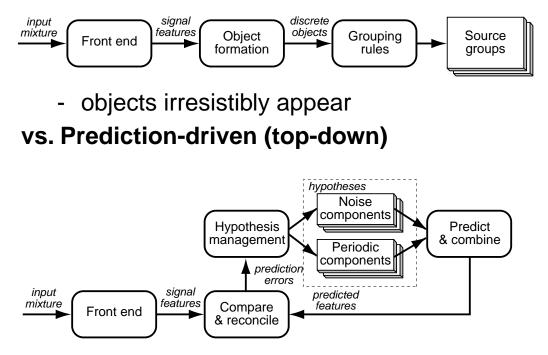


- duplex perception

Adding top-down constraints

Perception is not *direct* but a *search* for *plausible hypotheses*

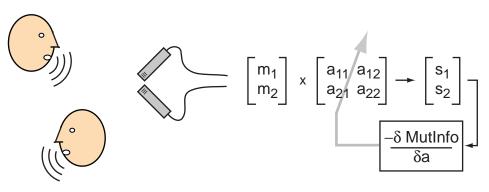
• Data-driven (bottom-up)...



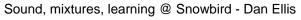
- match observations with parameters of a world-model
- need world-model constraints...

Aside: Optimal techniques (ICA, ABF) (Bell & Sejnowski etc.)

• General idea: Drive a parameterized separation algorithm to maximize independence of outputs



- Attractions:
 - mathematically rigorous, minimal assumptions
- Problems:
 - limitations of separation algorithm (N x N)
 - essentially bottom-up



Outline

1 Human sound organization

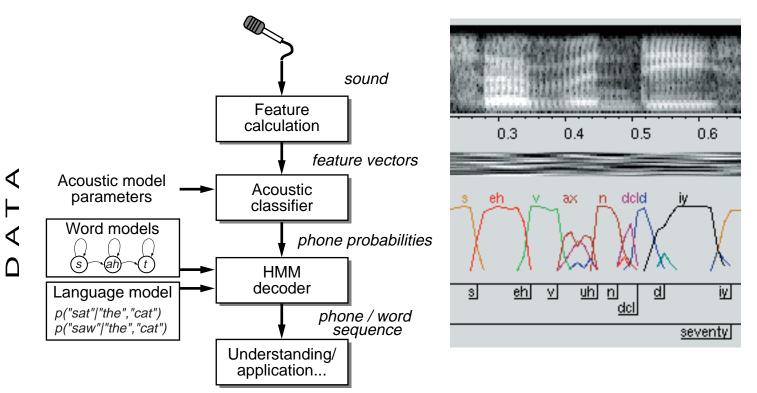
Computational Auditory Scene Analysis

3 Speech models and knowledge

- automatic speech recognition
- subword states
- cepstral coefficients
- 4 Sound mixture recognition
- **5** Learning opportunities

Speech models & knowledge

• Standard speech recognition



- 'State of the art' word-error rates (WERs):
 - 2% (dictation) 30% (telephone conversations)

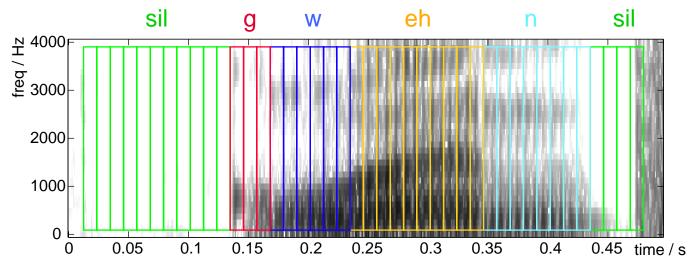
Speech units

• Speech is highly variable

- simple templates won't do
- spectral variation (voice quality)
- time-warp problems

• Match short segments (states), allow repeats

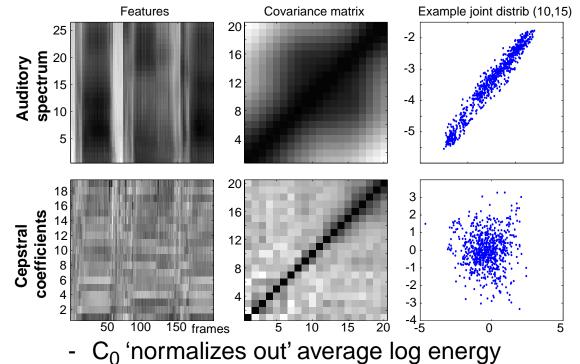
- model with pseudo-stationary slices of ~ 10 ms



• Speech models are distributions p(X|q)

Speech features: Cepstra

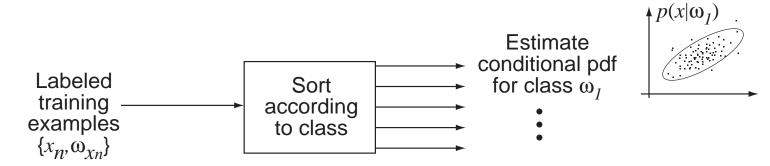
- Idea: Decorrelate & summarize spectral slices: $X_m[l] = IDFT\{\log|S[mH, k]|\}$
 - easier to model:



- Decorrelated pdfs fit diagonal Gaussians
 - DCT is close to PCA for log spectra

Acoustic model training

• Goal: describe p(X|q) with e.g. GMMs

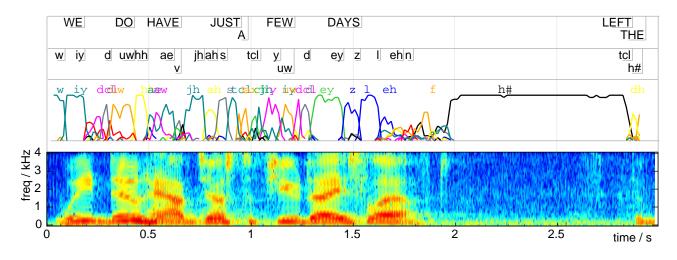


• Training data labels from:

- manual phonetic annotation
- 'best path' from earlier classifier (Viterbi)
- EM: joint estimation of labels & pdfs

HMM decoding

• Feature vectors cannot be reliably classified into phonemes



- Use top-down constraints to get good results
 - allowable phonemes
 - dictionary of known words
 - grammar of possible sentences
- Decoder searches all possible state sequences
 - at least notionally; pruning makes it possible

Outline

- **1** Human sound organization
- **2** Computational Auditory Scene Analysis
- **3** Speech models and knowledge

4 Sound mixture recognition

- feature invariance
- mixtures including
- general mixtures

5 Learning opportunities

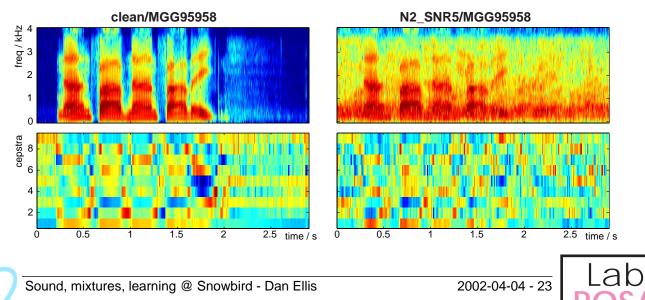
Sound mixture recognition

- Biggest problem in speech recognition is background noise interference
- Feature invariance approach
 - use features that reflect only speech
 - e.g. normalization, mean subtraction
 - but: non-static noise?
- Or: more complex models of the signal
 - HMM decomposition
 - missing-data recognition
- Generalize to other, multiple sounds

Feature normalization

- Idea: feature variations, not absolute level
- Hence: calculate average level & subtract it: $X[k] = S[k] - mean\{S[k]\}$
- Factors out fixed channel frequency response: s[n] = h[n] * e[n]

 $\log|S[k]| = \log|H[k]| + \log|E[k]|$

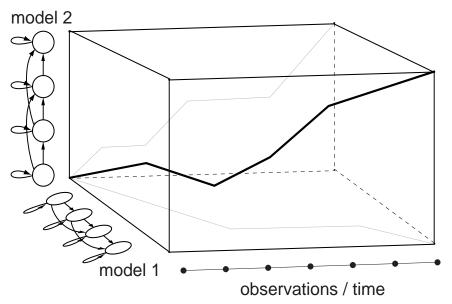


Normalize variance to handle added noise?

HMM decomposition

(e.g. Varga & Moore 1991, Roweis 2000)

 Total signal model has independent state sequences for 2+ component sources



- New combined state space $q' = \{q_1 q_2\}$
 - new observation pdfs for each combination

$$p(X^i | q_1^i, q_2^i)$$

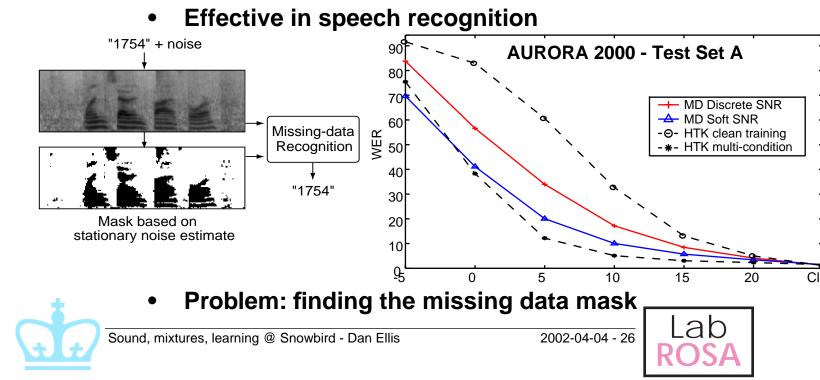
Problems with HMM decomposition

- $O(q_k)^N$ is exponentially large...
- Normalization no longer holds!
 - each source has a different gain
 → model at various SNRs?
 - models typically don't use overall energy C_0
 - each source has a different channel H[k]
- Modeling every possible sub-state combination is inefficient, inelegant and impractical

Missing data recognition

(Cooke, Green, Barker @ Sheffield)

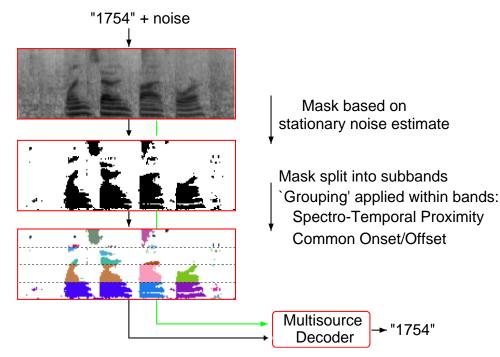
- Energy overlaps in time-freq. hide features
 - some observations are effectively missing
- Use missing feature theory...
 - integrate over missing data x_m under model M $p(x|M) = \int p(x_p|x_m, M) p(x_m|M) dx_m$



Maximum-likelihood data mask

(Jon Barker @ Sheffield)

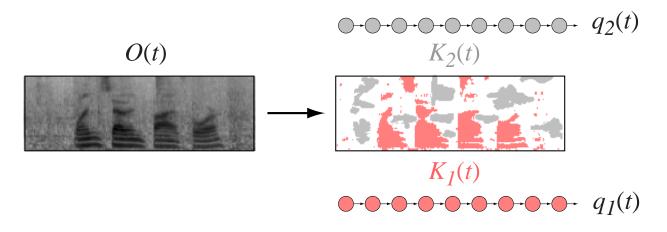
• Search of sound-fragment interpretations



- Decoder searches over data mask *K*: $p(M, K|x) \propto p(x|K, M)p(K|M)p(M)$
 - how to estimate p(K)

Multi-source decoding

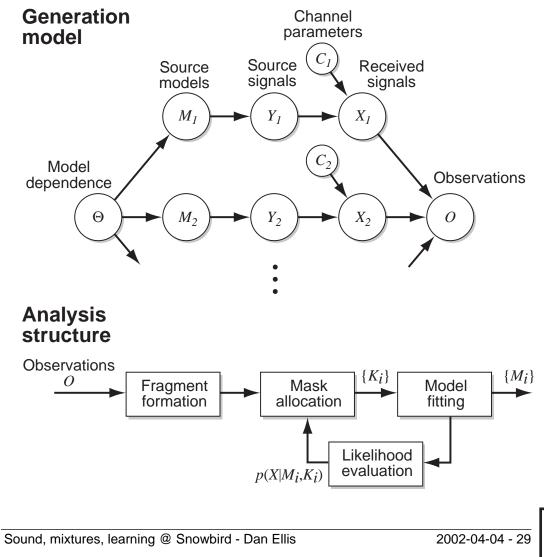
• Search for more than one source



- Mutually-dependent data masks
- Use CASA processing to propose masks
 - locally coherent regions
 - p(K|q)
- Theoretical vs. practical limits

General sound mixtures

• Search for generative explanation:



Outline

- **1** Human sound organization
- **2** Computational Auditory Scene Analysis
- **3** Speech models and knowledge
- 4 Sound mixture recognition

Opportunities for learning

- learnable aspects of modeling
- tractable decoding
- some examples

Opportunities for learning

- Per model feature distributions P(Y|M)
 - e.g. analyzing isolated sound databases
- Channel modifications P(X|Y)
 - e.g. by comparing multi-mic recordings
- Signal combinations $P(O|\{X_i\})$
 - determined by acoustics
- Patterns of model combinations $P(\{M_i\})$
 - loose dependence between sources
- Search for most likely explanations $P(\{M_i\}|O) \propto P(O|\{X_i\})P(\{X_i\}|\{M_i\})P(\{M_i\})$
 - Short-term structure: repeating events

Source models

- The speech recognition lesson: Use the data as much as possible
 - what can we do with unlimited data feeds?

Data sources

- clean data corpora
- identify near-clean segments in real sound

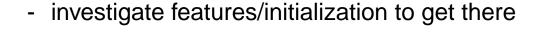
• Model types

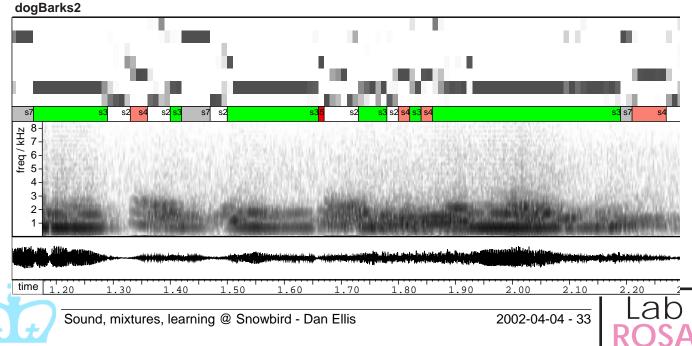
- templates
- parametric/constraint models
- HMMs

What are the HMM states?

- No sub-units defined for nonspeech sounds
- Final states depend on EM initialization
 - labels
 - clusters
 - transition matrix

• Have ideas of what we'd like to get



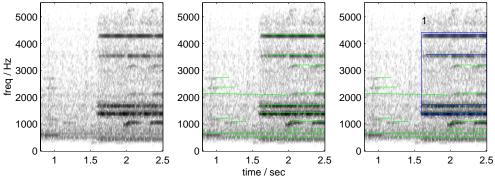


Tractable decoding

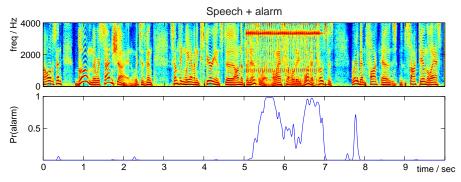
- Speech decoder notionally searches all states
- Parametric models give infinite space
 - need closed-form partial explanations
 - examine residual, iterate, converge
- Need general cues to get started
 - return to Auditory Scene Analysis:
 - onsets
 - harmonic patterns
 - then parametric fitting
- Need multiple hypothesis search, pruning, efficiency tricks
- Learning?
 Parameters for new source events
 - e.g. from artificial (hence labeled) mixtures

Example: Alarm sound detection

- Alarm sounds have particular structure
 - people 'know them when they hear them'
- Isolate alarms in sound mixtures



- sinusoid peaks have invariant properties



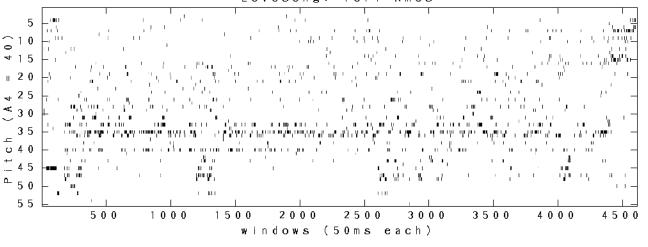
Learn model parameters from examples

Sound, mixtures, learning @ Snowbird - Dan Ellis

2002-04-04 - 35

Example: Music transcription (e.g. Masataka Goto)

- High-quality training material: Synthesizer sample kits
- Ground truth available: Musical scores
- Find ML explanations for scores
 - guide by multiple pitch tracking (hyp. search)



Lovesong: Tori Amos

Applications in similarity matching

Sound, mixtures, learning @ Snowbird - Dan Ellis

Summary

- Sound contains lots of information ... but it's always mixed up
- Psychologists describe ASA
 - ... but bottom-up computer models don't work
- Speech recognition works for isolated speech ... by exploiting top-down, context constraints
- Speech in mixtures via multiple-source models ... practical combinatorics are the main problem
- Generalize this idea for all sounds
 - ... need models of 'all sounds'
 - ... plus models of channel modification
 - ... plus ways to propose segmentations
 - ... plus missing-data recognition

Further reading

[BarkCE00] J. Barker, M.P. Cooke & D. Ellis (2000). "Decoding speech in the presence of other sound sources," Proc. ICSLP-2000, Beijing. ftp://ftp.icsi.berkeley.edu/pub/speech/papers/icslp00-msd.pdf [Breg90] A.S. Bregman (1990). Auditory Scene Analysis: the perceptual organization of sound, MIT Press. [Chev00] A. de Cheveigné (2000). "The Auditory System as a Separation Machine," Proc. Intl. Symposium on Hearing. http://www.ircam.fr/pcm/cheveign/sh/ps/ATReats98.pdf [CookE01] M. Cooke, D. Ellis (2001). "The auditory organization of speech and other sources in listeners and computational models," Speech Communication (accepted for publication). http://www.ee.columbia.edu/~dpwe/pubs/tcfkas.pdf [Ellis99] D.P.W. Ellis (1999). "Using knowledge to organize sound: The prediction-driven approach to computational auditory scene analysis...," Speech Communications 27. http://www.ee.columbia.edu/~dpwe/pubs/spcomcasa98.pdf [Roweis00] S. Roweis (2000). "One microphone source separation.," Proc. NIPS 2000. http://www.ee.columbia.edu/~dpwe/papers/roweis-nips2000.pdf

