Learning and Scene Analysis

Dan Ellis

Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Eng., Columbia Univ., NY USA dpwe@ee.columbia.edu

- I. Scene Analysis systems
- 2. Disambiguation
- 3. Learning

I. Scene Analysis Systems

• "Scene Analysis"

• not necessarily separation, recognition, ...

• scene = overlapping objects, ambiguity

• General Framework:

- distinguish input and output representations
- distinguish engine (algorithm) and control (computational model)

Human and Machine Scene Analysis

- CASA (Brown'92 et seq.):
 - o Input: Periodicity, continuity, onset "maps"
 - o Output: Waveform (or mask)
 - Engine: Time-frequency masking
 - Control: "Grouping cues" from input
 - or: spatial features (Roman, ...)

Human and Machine Scene Analysis

- CASA (e.g. Brown'92):
- ICA (Bell & Sejnowski et seq.):
 - o Input: waveform (or STFT)
 - Output: waveform (or STFT)
 - Engine: cancelation
 - Control: statistical independence of outputs
 - or energy minimization for beamforming

Human and Machine Scene Analysis

- CASA (e.g. Brown'92):
- ICA (Bell & Sejnowski et seq.):

• Human Listeners:

- o Input: excitation patterns ...
- o Output: percepts ...
- Engine:?
- Control: find a plausible explanation

2. Disambiguation

- Scene \Rightarrow multiple possible explanations Analysis \Rightarrow choose most reasonable one
- Most reasonable means...
 - consistent with grouping cues (CASA)
 - o independent sources (ICA)
 - o consistent with experience ... (human)
 - max $P(\{S_i\}|X) \propto P(X|\{S_i\}) P(\{S_i\})$

combination physics source models

 i.e. some kind of constraints to disambiguate
 Learning as the source of this disambiguation knowledge

3. Learning

• "Reasonable" = like what we've seen before? • i.e. infer source models $P(\{S_i\})$ from observations

• Ways to learn

- "memorize" instances
- o generalize to a subspace
 - linear or parametric
- Learning and Recognition
 - Recognition is classification: set of possible labels
 - o learning properties (distinctions) as best approach

Disambiguating with Knowledge

- Use strength of match to models as reasonableness measure for control
- e.g. MAXVQ (Roweis'03)
 - learn dictionary of spectrogram slices
 - find the ones that 'fit'
 - or a combination
 - ... then filter out excess energy

Laboratory for the Recognition and Organization of Speech and Audio

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Recognition for Separation

- Speech recognizers embody knowledge
 trained on 100s of hours of speech
 use them as a 'reasonableness' measure
- e.g. Seltzer, Raj, Reyes:

from Manuel Reyes's WASPAA 2003

COLUMBIA UNIVERSITY

bresentation

• speech recognizer's best-match provides optimization target

Learning Elsewhere

- Control: learn what is "reasonable"
- Input: discriminant features
 o learned subspaces
- Engine: clustering parameters
- Output: restoration...

Obliteration and Outputs

- Perfect separation is rarely possible
 - e.g. no cancelation after psychoacoustic coding
 - strong interference will obliterate part of target
- What should the output be?
 - o can fill-in missing-data holes using source models
 - 'pretend' we observed the full signal
 - but: hides observed/inferred distinction
 - output internal model state instead?
 - e.g. ASR output
 - depends on eventual use...

Conclusions

- Framework for scene analysis
 Input, Output, Engine, Control
- Scene analysis as Disambiguation
 o finding the additional constraints
- Learning to spot a reasonable solution
- Various implementations
 - direct dictionary fit
 - compare output to recognizer's state
- Learned states as the output?

