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1. Scene Analysis Systems

• “Scene Analysis”
not necessarily separation, recognition, ...
scene = overlapping objects, ambiguity

• General Framework:

distinguish input and output representations
distinguish engine (algorithm) and control 
(computational model)



Speech Separation: Learning - Dan Ellis 2004-11-05

Human and Machine Scene Analysis

• CASA (Brown’92 et seq.):
Input:  Periodicity, continuity, onset “maps”  
Output:  Waveform (or mask)
Engine: Time-frequency masking
Control: “Grouping cues” from input
- or: spatial features (Roman, ...)
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Human and Machine Scene Analysis

• CASA (e.g. Brown’92):
• ICA (Bell & Sejnowski et seq.):

Input:  waveform (or STFT)
Output:  waveform (or STFT)
Engine: cancelation
Control: statistical independence of outputs
- or energy minimization for beamforming 
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Human and Machine Scene Analysis

• CASA (e.g. Brown’92):
• ICA (Bell & Sejnowski et seq.):
• Human Listeners:

Input: excitation patterns ...
Output:  percepts ...
Engine: ?
Control: find a plausible explanation
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• Scene ⇒ multiple possible explanations
Analysis ⇒ choose most reasonable one

• Most reasonable means...
consistent with grouping cues (CASA)
independent sources (ICA)
consistent with experience ... (human)
max P({Si}| X) ∝ P(X |{Si}) P({Si})

• i.e. some kind of constraints to disambiguate
Learning as the source of this disambiguation 
knowledge

2. Disambiguation

combination physics source models
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3. Learning

• “Reasonable” = like what we’ve seen before?
i.e. infer source models P({Si}) from observations

• Ways to learn
“memorize” instances
generalize to a subspace
- linear or parametric

• Learning and Recognition
Recognition is classification: set of possible labels
learning properties (distinctions) as best approach
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Disambiguating with Knowledge

• Use strength of match to models as 
reasonableness measure for control

• e.g. MAXVQ (Roweis’03)
learn dictionary of spectrogram slices
find the ones that ‘fit’
- or a combination
... then filter out excess energy

Noise-corrupt speech

MAXVQ Results: Denoising
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Training: 300sec of isolated speech (TIMIT) to fit 512 codewords, and 100sec of
isolated noise (NOISEX) to fit 32 codewords; testing on new signals at 0dB SNR
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Recognition for Separation

• Speech recognizers embody knowledge
trained on 100s of hours of speech
use them as a ‘reasonableness’ measure

• e.g. Seltzer, Raj, Reyes:

speech recognizer’s best-match provides 
optimization target
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Learning Elsewhere

• Control: learn what is “reasonable”
• Input: discriminant features

learned subspaces

• Engine: clustering parameters
• Output: restoration...
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Obliteration and Outputs

• Perfect separation is rarely possible
e.g. no cancelation after psychoacoustic coding
strong interference will obliterate part of target

• What should the output be?
can fill-in missing-data holes using source models
- ‘pretend’ we observed the full signal
- but: hides observed/inferred distinction 
output internal model state instead?
- e.g. ASR output
- depends on eventual use...
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Conclusions

• Framework for scene analysis
Input, Output, Engine, Control

• Scene analysis as Disambiguation
finding the additional constraints

• Learning to spot a reasonable solution 
• Various implementations

direct dictionary fit
compare output to recognizer’s state

• Learned states as the output?


