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1. Managing Music Collections

• A lot of music data available
e.g. 60G of MP3 ≈ 1000 hr of audio, 15k tracks

• Management challenge
how can computers help?

• Application scenarios
personal music collection
discovering new music
“music placement”
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Learning from Music
• What can we infer from 1000 h of music?

common patterns
sounds, melodies, chords, form
what is and what isn’t music

• Data driven musicology?

• Applications
modeling/description/coding
computer generated music
curiosity...
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The Big Picture
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2. Music Information
• How to represent music audio?

• Audio features
spectrogram, MFCCs, bases

• Musical elements
notes, beats, chords, phrases
requires transcription

• Or something inbetween?
optimized for a certain task?
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Transcription as Classification
• Exchange signal models for data

transcription as pure classification problem:

Poliner & Ellis ‘05,’06,’07

Classification:
•N-binary SVMs (one for ea. note).
•Independent frame-level
classification on 10 ms grid.

•Dist. to class bndy as posterior.

classification posteriors

Temporal Smoothing:
•Two state (on/off) independent
HMM for ea. note.  Parameters 
learned from training data.

•Find Viterbi sequence for ea. note.

hmm smoothing

Training data and features:
•MIDI, multi-track recordings, 
playback piano, & resampled audio
(less than 28 mins of train audio). 

•Normalized magnitude STFT.

feature representation feature vector
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Polyphonic Transcription
• Real music excerpts + ground truth
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MIREX 2007

Frame-level transcription
Estimate the fundamental frequency of all notes present on a 10 ms grid

Note-level transcription
Group frame-level predictions into note-level transcriptions by estimating onset/offset

0

0.25

0.50

0.75

1.00

1.25

Precision Recall Acc Etot Esubs Emiss Efa

0

0.25

0.50

0.75

1.00

1.25

Precision Recall Ave. F-measure Ave. Overlap



Music Audio Information - Ellis 2007-11-02 p.     /42

Beat Tracking
• Goal: One feature vector per ‘beat’ (tatum)

for tempo normalization, efficiency

• “Onset Strength Envelope”
sumf(max(0, difft(log |X(t, f)|)))

• Autocorr. + window → global tempo estimate
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Beat Tracking
• Dynamic Programming finds beat times {ti}

optimizes i O(ti) +  i W((ti+1 – ti – p)/)
where O(t) is onset strength envelope (local score)
W(t) is a log-Gaussian window (transition cost)
p is the default beat period per measured tempo
incrementally find best predecessor at every time
backtrace from largest final score to get beats
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C*(t) = γ O(t) + (1–γ)max{W((τ – τp)/β)C*(τ)}
τ

P(t) = argmax{W((τ – τp)/β)C*(τ)}
τ

tτ

O(t)

C*(t)
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Beat Tracking

• DP will bridge gaps (non-causal)
there is always a best path ...

• 2nd place in MIREX 2006 Beat Tracking
compared to McKinney & Moelants human data
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Chroma Features
• Chroma features convert spectral energy 

into musical weights in a canonical octave
i.e. 12 semitone bins

• Can resynthesize as “Shepard Tones”
all octaves at once
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Aligned Global model

Taxman Eleanor Rigby I'm Only Sleeping

She Said She Said Good Day Sunshine And Your Bird Can Sing

Love You To Yellow Submarine
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Key Estimation
• Covariance of chroma reflects key
• Normalize by transposing for best fit

single Gaussian 
model of one piece
find ML rotation 
of other pieces
model all 
transposed pieces
iterate until 
convergence
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Ellis ICASSP ’07
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Chord Transcription
• “Real Books” give chord transcriptions

but no exact timing
.. just like speech transcripts

• Use EM to simultaneously
learn and align chord models
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# The Beatles - A Hard Day's Night 
#
G Cadd9 G F6 G Cadd9 G F6 G C D G C9 G 
G Cadd9 G F6 G Cadd9 G F6 G C D G C9 G 
Bm Em Bm G Em C D G Cadd9 G F6 G Cadd9 G
 F6 G C D G C9 G D 
G C7 G F6 G C7 G F6 G C D G C9 G Bm Em Bm
 G Em C D 
G Cadd9 G F6 G Cadd9 G F6 G C D G C9 G 
C9 G Cadd9 Fadd9

ae1 ae2 ae3

dh1 dh2

Model inventory

Uniform
initialization
alignments

Initialization
parameters

Repeat until 
convergence

E-step:
probabilities
of unknowns

M-step:
maximize via
parameters

Labelled training data
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Sheh & Ellis ’03
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Chord Transcription

• Needed more training data...
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3. Music Similarity
• The most central problem...

motivates extracting musical information
supports real applications (playlists, discovery)

• But do we need content-based similarity?
compete with collaborative filtering
compete with fingerprinting + metadata

• Maybe ... for the Future of Music
connect listeners directly to musicians

16
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Discriminative Classification
• Classification as a proxy for similarity
• Distribution models...

• vs. SVM
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Segment-Level Features
• Statistics of spectra and envelope

define a point in feature space
for SVM classification, or Euclidean similarity...

18

Mandel & Ellis ‘07

Lab
ROSA
Laboratory for the Recognition and
Organization of Speech and Audio

LabROSA’s audio music similarity and classification systems
Michael I Mandel and Daniel P W Ellis

LabROSA · Dept of Electrical Engineering · Columbia University, New York
{mim,dpwe}@ee.columbia.edu

1. Feature Extraction
• Spectral features are the same as Mandel and Ellis (2005), mean and

unwrapped covariance of MFCCs
• Temporal features are similar to those in Rauber et al. (2002)

• Break input into overlapping 10-second clips
• Analyze mel spectrum of each clip, averaging clips’ features
• Combine mel frequencies together to get magnitude bands for low,

low-mid, high-mid, and high frequencies
• FFT in time gives modulation frequency, keep magnitude of low-

est 20% of frequencies
• DCT in modulation frequency gives envelope cepstrum
• Stack the four bands’ envelope cepstra into one feature vector

• Each feature is then normalized across all of the songs to be zero-
mean, unit-variance.

2. Similarity and Classification
• We use a DAG-SVM for n-way classification of songs (Platt et al., 2000)
• The distance between songs is the Euclidean distance between their

feature vectors
• During testing, some songs were a top similarity match for many songs
• Re-normalizing each song’s feature vector avoided this problem

References
M. Mandel and D. Ellis. Song-level features and support vector machines for music classification. In Joshua

Reiss and Geraint Wiggins, editors, Proc. ISMIR, pages 594–599, 2005.

John C. Platt, Nello Cristianini, and John Shawe-Taylor. Large margin DAGs for multiclass classification. In
S.A. Solla, T.K. Leen, and K.-R. Mueller, editors, Advances in Neural Information Processing Systems 12,
pages 547–553, 2000.

Andreas Rauber, Elias Pampalk, and Dieter Merkl. Using psycho-acoustic models and self-organizing maps
to create a hierarchical structuring of music by sound similarity. In Michael Fingerhut, editor, Proc. ISMIR,
pages 71–80, 2002.

3. Results
Audio Music Similarity Audio Classification
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MIREX’07 Results
• One system for similarity and classification
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Active-Learning Playlists
• SVMs are well suited to “active learning”

solicit labels on items closest to current boundary

• Automatic player 
with “skip”
= Ground truth 
   data collection
active-SVM 
automatic playlist 
generation

20
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Cover Song Detection
• “Cover Songs” = reinterpretation of a piece

different instrumentation, character
no match with “timbral” features

• Need a different representation!
beat-synchronous chroma features
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Beat-Synchronous Chroma Features
• Beat + chroma features / 30ms frames
→ average chroma within each beat
compact; sufficient?
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Matching: Global Correlation
• Cross-correlate entire beat-chroma matrices

... at all possible transpositions
implicit combination of match quality and duration

• One good matching fragment is sufficient...?
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MIREX 06 Results
• Cover song contest

30 songs x 11 
versions of each (!)
(data has not been 
disclosed)
# true covers in top 10
8 systems compared 
(4 cover song 
+ 4 similarity)

• Found 761/3300
= 23% recall
next best: 11%
guess: 3%
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MIREX 06 Cover Song Results:
# Covers retrieved per song per system
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Cross-Correlation Similarity
• Use cover-song approach to find similarity

e.g. similar note/instrumentation sequence
may sound very similar to judges

• Numerous variants
try on chroma (melody/harmony) 
and MFCCs (timbre)
try full search (xcorr) 
or landmarks (indexable)
compare to random, 
segment-level stats

• Evaluate by subjective tests
modeled after MIREX similarity

25
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Cross-Correlation Similarity
• Human web-based judgments

binary judgments for speed
6 users x 30 queries x 10 candidate returns

• Cross-correlation inferior to baseline...
... but is getting somewhere, even with ‘landmark’

26

that assigns a single time anchor or boundary within each seg-
ment, then calculates the correlation only at the single skew
that aligns the time anchors. We use the BIC method [8] to
find the boundary time within the feature matrix that maxi-
mizes the likelihood advantage of fitting separate Gaussians
to the features each side of the boundary compared to fit-
ting the entire sequence with a single Gaussian i.e. the time
point that divides the feature array into maximally dissimi-
lar parts. While almost certain to miss some of the matching
alignments, an approach of this simplicity may be the only
viable option when searching in databases consisting of mil-
lions of tracks.

3. EXPERIMENTS AND RESULTS

The major challenge in developing music similarity systems
is performing any kind of quantitative analysis. As noted
above, the genre and artist classification tasks that have been
used as proxies in the past most likely fall short of accounting
for subjective similarity, particularly in the case of a system
such as ours which aims to match structural detail instead of
overall statistics. Thus, we conducted a small subjective lis-
tening test of our own, modeled after the MIREX music simi-
larity evaluations [4], but adapted to collect only a single sim-
ilar/not similar judgment for each returned clip (to simplify
the task for the labelers), and including some random selec-
tions to allow a lower-bound comparison.

3.1. Data

Our data was drawn from the uspop2002 dataset of 8764 pop-
ular music tracks. We wanted to work with a single, broad
genre (i.e. pop) to avoid confounding the relatively simple
discrimination of grossly different genres with the more sub-
tle question of similarity. We also wanted to maximize the
density of our database within the area of coverage.

For each track, we took a 10 s excerpt from 60 s into the
track (tracks shorter than this were not included). We chose
10 s based on our earlier experiments with clips of this length
that showed this is an adequate length for listeners to get a
sense of the music, yet short enough that they will probably
listen to the whole clip [9]. (MIREX uses 30 s clips which are
quite arduous to listen through).

3.2. Comparison systems

Our test involved rating ten possible matches for each query.
Five of these were based on the system described above: we
included (1) the best match from cross-correlating chroma
features, (2) from cross-correlating MFCCs, (3) from a com-
bined score constructed as the harmonic mean of the chroma
and MFCC scores, (4) based on the combined score but ad-
ditionally constraining the tempos (from the beat tracker) of
database items to be within 5% of the query tempo, and (5)

Table 1. Results of the subjective similarity evaluation.
Counts are the number of times the best hit returned by each
algorithm was rated as similar by a human rater. Each al-
gorithm provided one return for each of 30 queries, and was
judged by 6 raters, hence the counts are out of a maximum
possible of 180.

Algorithm Similar count
(1) Xcorr, chroma 48/180 = 27%
(2) Xcorr, MFCC 48/180 = 27%
(3) Xcorr, combo 55/180 = 31%
(4) Xcorr, combo + tempo 34/180 = 19%
(5) Xcorr, combo at boundary 49/180 = 27%
(6) Baseline, MFCC 81/180 = 45%
(7) Baseline, rhythmic 49/180 = 27%
(8) Baseline, combo 88/180 = 49%
Random choice 1 22/180 = 12%
Random choice 2 28/180 = 16%

combined score evaluated only at the reference boundary of
section 2.1. To these, we added three additional hits from a
more conventional feature statistics system using (6) MFCC
mean and covariance (as in [2]), (7) subband rhythmic fea-
tures (modulation spectra, similar to [10]), and (8) a simple
summation of the normalized scores under these two mea-
sures. Finally, we added two randomly-chosen clips to bring
the total to ten.

3.3. Collecting subjective judgments

We generated the sets of ten matches for 30 randomly-chosen
query clips. We constructed a web-based rating scheme, where
raters were presented all ten matches for a given query on a
single screen, with the ability to play the query and any of
the results in any order, and to click a box to mark any of the
returns as being judged “similar” (binary judgment). Each
subject was presented the queries in a random sequence, and
the order of the matches was randomized on each page. Sub-
jects were able to pause and resume labeling as often as they
wished. Complete labeling of all 30 queries took around one
hour total. 6 volunteers from our lab completed the labeling,
giving 6 binary votes for each of the 10 returns for each of the
30 queries.

3.4. Results

Table 1 shows the results of our evaluation. The binary sim-
ilarity ratings across all raters and all queries are pooled for
each algorithm to give an overall ‘success rate’ out of a possi-
ble 180 points – roughly, the probability that a query returned
by this algorithm will be rated as similar by a human judge.
A conservative binomial significance test requires a difference
of around 13 votes (7%) to consider two algorithms different.
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Cross-Correlation Similarity
• Results are not overwhelming

.. but database is only a few thousand clips

27
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“Anchor Space”

• Acoustic features describe each song
.. but from a signal, not a perceptual, perspective
.. and not the differences between songs

• Use genre classifiers to define new space
prototype genres are “anchors”

28
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“Anchor Space”

• Frame-by-frame high-level categorizations
compare to
raw features?

properties in distributions? dynamics?
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‘Playola’ Similarity Browser
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Ground-truth data
• Hard to evaluate Playola’s ‘accuracy’

user tests...
ground truth?

• “Musicseer” online 
survey/game:
ran for 9 months in 2002
> 1,000 users, 
> 20k judgments
http://labrosa.ee.columbia.edu/
projects/musicsim/

Ellis et al, ‘02
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“Semantic Bases”
• Describe segment in human-relevant terms

e.g. anchor space, but more so

• Need ground truth...
what words to people use?

• MajorMiner 
game:
400 users
7500 unique tags
70,000 taggings
2200 10-sec clips used

• Train classifiers...

32
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3. Music Structure Discovery
• Use the many examples to map out the 

“manifold” of music audio
... and hence define the subset that is music

• Problems
alignment/registration of data
factoring & abstraction
separating parts?
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Eigenrhythms: Drum Pattern Space

• Pop songs built on repeating “drum loop”
variations on a few bass, snare, hi-hat patterns

• Eigen-analysis (or ...) to capture variations?
by analyzing lots of (MIDI) data, or from audio

• Applications
music categorization
“beat box” synthesis
insight

Ellis & Arroyo ‘04
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Aligning the Data
• Need to align patterns prior to modeling...

tempo (stretch): 
by inferring BPM & 

normalizing

downbeat (shift): 
correlate against 
‘mean’ template
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Eigenrhythms (PCA)

• Need 20+ Eigenvectors for good coverage 
of 100 training patterns (1200 dims)

• Eigenrhythms both add and subtract
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Posirhythms (NMF)

• Nonnegative: only adds beat-weight
• Capturing some structure
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Eigenrhythm BeatBox
• Resynthesize rhythms from eigen-space
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Melody Clustering
• Goal: Find ‘fragments’ that recur in melodies

.. across large music database

.. trade data for model sophistication

• Data sources
pitch tracker, or MIDI training data

• Melody fragment representation
DCT(1:20) - removes average, smoothes detail

Training
data

Melody
extraction

5 second
fragments

Top
clusters

VQ 
clustering
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Melody Clustering
• Clusters match underlying contour:

• Some interesting 
matches:
e.g. Pink + Nsync
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Beat-Chroma Fragment Codebook
• Idea: Find the very popular music fragments

e.g. perfect cadence, rising melody, ...?

• Clustering a large enough database should 
reveal these
but: registration of phrase boundaries, transposition

• Need to deal with really large datasets
e.g. 100k+ tracks, multiple landmarks in each
but: Locality Sensitive Hashing 
can help - quickly finds ‘most’ 
points in a certain radius

• Experiments in progress...
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Conclusions

• Lots of data 
+ noisy transcription 
+ weak clustering
⇒ musical insights?
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