# Extracting and Using Music Audio Information 

Dan Ellis
Laboratory for Recognition and Organization of Speech and Audio Dept. Electrical Engineering, Columbia University, NY USA

http://labrosa.ee.columbia.edu/

1. Motivation: Music Collections
2. Music Information
3. Music Similarity
4. Music Structure Discovery

## LabROSA Overview



## Managing Music Collections

- A lot of music data available o e.g. 60G of MP3 $\approx 1000 \mathrm{hr}$ of audio, I 5k tracks
- Management challenge o how can computers help?
- Application scenarios o personal music collection - discovering new music - "music placement"



## Learning from Music

- What can we infer from 1000 h of music?
o common patterns
sounds, melodies, chords, form
o what is and what isn't music
- Data driven musicology?
- Applications
- modeling/description/coding o computer generated music o curiosity...

Scatter of PCA(3:6) of $12 \times 16$ beatchroma



## The Big Picture


.. so far

## Music Information

- How to represent music audio?
- Audio features
- spectrogram, MFCCs, bases

- Musical elements
o notes, beats, chords, phrases
o requires transcription

- Or something inbetween? - optimized for a certain task?


## Transcription as Classification

- Exchange signal models for data
o transcription as pure classification problem:

> | Training data and features: |
| :--- |
| -MIDI, multi-track recordings, |
| playback piano, \& resampled audio |
| (less than 28 mins of train audio). |
| -Normalized magnitude STFT. |

## Classification:

- N -binary SVMs (one for ea. note). - Independent frame-level classification on 10 ms grid.
-Dist. to class bndy as posterior.


```
Temporal Smoothing:
-Two state (on/off) independent
HMM for ea. note. Parameters
learned from training data.
\bulletFind Viterbi sequence for ea. note.
```


## Polyphonic Transcription

- Real music excerpts + ground truth

Frame-level transcription


Note-level transcription
Group frame-level predictions into note-level transcriptions by estimating onset/offset


## Beat Tracking

- Goal: One feature vector per 'beat' (tatum) o for tempo normalization, efficiency
- "Onset Strength Envelope" $\circ \operatorname{sum}_{f}\left(\max \left(0, \operatorname{diff}_{t}(\log |X(t, f)|)\right)\right)$

- Autocorr. + window $\rightarrow$ global tempo estimate



## Beat Tracking

- Dynamic Programming finds beat times $\left\{t_{i}\right\}$ - optimizes $\Sigma_{i} O\left(t_{i}\right)+\alpha \Sigma_{i} W\left(\left(t_{i+1}-t_{i}-\tau_{p}\right) / \beta\right)$
- where $O(t)$ is onset strength envelope (local score)
$W(t)$ is a log-Gaussian window (transition cost)
$\tau_{p}$ is the default beat period per measured tempo - incrementally find best predecessor at every time o backtrace from largest final score to get beats



## Beat Tracking

- DP will bridge gaps (non-causal)
o there is always a best path ...

- 2nd place in MIREX 2006 Beat Tracking
o compared to McKinney \& Moelants human data



## Chroma Features

- Chroma features convert spectral energy into musical weights in a canonical octave o i.e. 12 semitone bins


- Can resynthesize as "Shepard Tones"
o all octaves at once


Lab

## Key Estimation

- Covariance of chroma reflects key
- Normalize by transposing for best fit
o single Gaussian model of one piece
o find ML rotation of other pieces
- model all
transposed pieces
- iterate until
convergence







Lab

## Chord Transcription

- "Real Books" give chord transcriptions
o but no exact timing
- .. just like speech transcripts
- Use EM to simultaneously learn and align chord models

```
# The Beatles - A Hard Day's Night
#
G Cadd9 G F6 G Cadd9 G F6 G C D G C9 G
G Cadd9 G F6 G Cadd9 G F6 G C D G C9 G
Bm Em Bm G Em C D G Cadd9 G F6 G Cadd9 G
F6 G C D G C9 G D
G C7 G F6 G C7 G F6 G C D G C9 G Bm Em Bm
G Em C D
G Cadd9 G F6 G Cadd9 G F6 G C D G C9 G
C9 G Cadd9 Fadd9
```




## Chord Transcription

Frame-level Accuracy


- Needed more training data...

Lab

## Music Similarity

- The most central problem...
o motivates extracting musical information
- supports real applications (playlists, discovery)
- But do we need content-based similarity?
o compete with collaborative filtering
- compete with fingerprinting + metadata

- Maybe ... for the Future of Music o connect listeners directly to musicians


## Discriminative Classification

- Classification as a proxy for similarity
- Distribution models...



## Segment-Level Features

- Statistics of spectra and envelope define a point in feature space
- for SVM classification, or Euclidean similarity...


Lab

## MIREX'07 Results

- One system for similarity and classification


PS = Pohle, Schnitzer; GT = George Tzanetakis; LB = Barrington, Turnbull, Torres, Lanckriet; CB = Christoph Bastuck; TL = Lidy, Rauber, Pertusa, Iñesta; ME = Mandel, Ellis; BK = Bosteels, Kerre; PC = Paradzinets, Chen


IM = IMIRSEL M2K; ME = Mandel, Ellis; TL = Lidy, Rauber, Pertusa, Iñesta; GT = George Tzanetakis; KL = Kyogu Lee; CL = Laurier, Herrera;
GH = Guaus, Herrera

## Active-Learning Playlists

- SVMs are well suited to "active learning"
o solicit labels on items closest to current boundary
- Automatic player
with "skip"
= Ground truth data collection
O active-SVM
automatic playlist
generation



## Cover Song Detection

- "Cover Songs" = reinterpretation of a piece o different instrumentation, character o no match with "timbral" features

Let It Be - The Beatles
Let It Be / Beatles / verse 1


Let It Be - Nick Cave
Let It Be / Nick Cave / verse 1


- Need a different representation!
o beat-synchronous chroma features



## Beat-Synchronous Chroma Features

- Beat + chroma features / 30ms frames
$\rightarrow$ average chroma within each beat o compact; sufficient?







## Matching: Global Correlation

- Cross-correlate entire beat-chroma matrices
o ... at all possible transpositions
o implicit combination of match quality and duration



- One good matching fragment is sufficient...?

Lab

## MIREX 06 Results

- Cover song contest - 30 songs $\times 11$ versions of each (!) o (data has not been disclosed)
- \# true covers in top 10
- 8 systems compared (4 cover song
+4 similarity)
- Found 76I/3300
$=23 \%$ recall
o next best: II\%


## Cross-Correlation Similarity

- Use cover-song approach to find similarity
o e.g. similar note/instrumentation sequence
- may sound very similar to judges
- Numerous variants
o try on chroma (melody/harmony) and MFCCs (timbre)
o try full search (xcorr) or landmarks (indexable)
- compare to random, segment-level stats
- Evaluate by subjective tests o modeled after MIREX similarity



## RosaTron

| Query clip 3 of 30: | Result clip 0: | $\bigcirc$ not similar $\bigcirc$ similar |
| :---: | :---: | :---: |
|  | Result clip 1: | $\bigcirc$ not similar $¢$ similar |
|  | Result clip 2: | $\bigcirc$ not similar $¢$ similar |
|  | Result clip 3: | $\bigcirc$ not similar $\bigcirc$ similar |
|  | Result clip 4: | $\bigcirc$ not similar $C$ similar |
|  | Result clip 5: | $\bigcirc$ not similar $\bigcirc$ similar |
|  | Result clip 6: | $\bigcirc$ not similar $¢$ similar |
|  | Result clip 7: | $\bigcirc$ not similar $¢$ similar |
|  | Result clip 8: | $\bigcirc$ not similar $\bigcirc$ similar |
|  | Result clip 9: $®$ | $\bigcirc$ not similar $\bigcirc$ similar |
|  | Rate |  |

## Cross-Correlation Similarity

- Human web-based judgments
o binary judgments for speed
$\circ 6$ users $\times 30$ queries $\times 10$ candidate returns

| Algorithm | Similar count |
| :--- | :---: |
| (1) Xcorr, chroma | $48 / 180=27 \%$ |
| (2) Xcorr, MFCC | $48 / 180=27 \%$ |
| (3) Xcorr, combo | $55 / 180=31 \%$ |
| (4) Xcorr, combo + tempo | $34 / 180=19 \%$ |
| (5) Xcorr, combo at boundary | $49 / 180=27 \%$ |
| (6) Baseline, MFCC | $81 / 180=45 \%$ |
| (7) Baseline, rhythmic | $49 / 180=27 \%$ |
| (8) Baseline, combo | $\mathbf{8 8 / 1 8 0}=\mathbf{4 9 \%}$ |
| Random choice 1 | $22 / 180=12 \%$ |
| Random choice 2 | $28 / 180=16 \%$ |

- Cross-correlation inferior to baseline...
- ... but is getting somewhere, even with 'landmark'


## Cross-Correlation Similarity

- Results are not overwhelming
- .. but database is only a few thousand clips

| $\theta \theta \theta$ |  |  | DXmhpf.html |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $4 \rightarrow$ 宜 $\mathrm{C}+$ | 2) file:///Users/dpwe/projects/artistid/artist20/clips/DXmhpf.html |  |  |  | - Q- Google |  |
| W Gmail Coogle delicious dpwe/docs To Do 2003-07-13 WNYC.mp3 dpwe tmp IEEExp BBC News Trips 123 poughkeepsie trains |  |  |  |  |  |  |
| Too Much Dave Matthews Band | Too Much Dave Matthews Band $=0.00$ | $\begin{array}{\|l\|l\|} \text { Erotica } \\ \text { Madionna } \\ \hline 0.00 \end{array}$ | $\begin{aligned} & \text { Don t Tell Me } \\ & \begin{array}{l} \text { Madonna } \\ -0.00 \end{array} \end{aligned}$ | $\begin{array}{\|l\|l\|} \hline \text { Waiting } \\ \hline \text { Madonna } \\ \hline 0.00 \end{array}$ | Where Life Begins Madonna <br> $=0.00$ | Did You Do <br> Madonna <br> -0.00 |
| Hey Nineteen steely Dan | Hey Nineteen <br> Sreely Dan <br> -0.00 | Where Life Begins <br> Madonna <br> $-0.00$ | $\begin{aligned} & \text { Erotica } \\ & \text { Madonna } \\ & =-0.00 \end{aligned}$ | Don t Tell Me <br> Madonna <br> -0.00 | Now I m Following You <br> Part II. <br> Madonns <br> -0.00 | Too Much Dive Marthew $-0.00$ |
| Little 15 Depeche Mode | Little 15 <br> Deoeche Mode <br> -0.00 | Don t Tell Me <br> Madonna <br> -0.00 | Lolita <br> Suzanne Vegal -0.00 | Where Life <br> Begins <br> Madonna <br> $-0.00$ | Macy s Day Parade <br> Green Day <br> $-0.00$ | $\begin{aligned} & \text { Seconds } \\ & \frac{12}{-0.00} \\ & \hline-0 . \end{aligned}$ |
| The Same Deep Water As You <br> Cure | The Same Deep Water As <br> You <br> Cure <br> $-0.00$ | $\begin{aligned} & \text { Scarlet } \\ & \frac{12}{02} \\ & \hline-0.00 \end{aligned}$ | Breathing in fumes <br> Depeche Mode <br> $-0.00$ | Where Life <br> Begins <br> Madonna <br> $-0.00$ | $\begin{array}{\|l\|l\|} \hline \text { Erotica } \\ \text { Madonnaa } \\ \hline 0.00 \\ \hline \end{array}$ | $\begin{array}{\|l} \text { Try lust AL } \\ \hline \text { Harder } \\ \hline \frac{\text { Boxetts }}{} \\ \hline-0.00 \end{array}$ |
| $\frac{\text { Scarlet }}{\mathbf{U 2}}$ | $\begin{aligned} & \text { Scarlet } \\ & \frac{32}{0-0.00} \\ & \hline 10 \end{aligned}$ | The Same Deep Water As <br> You <br> Sure <br> $=0.00$ | Rollin <br> Carth Brooks <br> $-0.00$ |  | $\frac{\text { In the Light }}{\frac{\text { Led Zeppelin }}{=0.01}}$ | $\begin{array}{\|l} 1 \text { m Sorry } \\ \frac{\text { Roxette }}{} \\ \hline 0.01 \end{array}$ |
| $\begin{aligned} & \text { Flying } \\ & \text { Beatles } \\ & \hline \end{aligned}$ | $\frac{\text { Flying }}{\frac{\text { Beaties }}{}} \frac{0.00}{-0.00}$ | Breathing in fumes <br> Depeche Node <br> $-0.00$ | Keep It TogetherMadonna <br> -0.00 | Where Life <br> Begins <br> Madonns <br> $-0.00$ | $\begin{array}{\|l\|l\|} \hline \text { Erotica } \\ \text { Madonna } \\ \hline 0.00 \\ \hline \end{array}$ |  |
| Breathing in fumes Depeshe Mode | Breathing in fumes Depeche Mode -0.00 | $\begin{aligned} & \text { Flying } \\ & \text { Reartes } \\ & =0.00 \end{aligned}$ | Where Life Begins <br> Madonna <br> $-0.00$ | EroticaMadonna <br> -0.00 | Wish U HeavenPrince <br> -0.00 | Dragon Atta <br> Bonus Rem <br> Queen <br> $-0.00$ |
| Bad Moon Rising Creedence Cleanwater Revival | Bad Moon Rising <br> Creedence Clearwater Revival $-0.00$ | Let 5 Pretend We re Married <br> Prince <br> $-0.00$ | Don t look now Creedence Clearwater Revival $-0.00$ | Cry Baby <br> Madonna <br> -0.00 | $\begin{aligned} & \text { Fashion Victim } \\ & \begin{array}{l} \text { Green Day } \\ \hline-0.00 \end{array} \\ & \hline \end{aligned}$ | Shiver And Cure -0.00 |

## "Anchor Space"

- Acoustic features describe each song
- .. but from a signal, not a perceptual, perspective - .. and not the differences between songs
- Use genre classifiers to define new space o prototype genres are "anchors"


Lab

## "Anchor Space"

- Frame-by-frame high-level categorizations
- compare to raw features?


- properties in distributions? dynamics?


## 'Playola’ Similarity Browser



Get selections: 20 songs $\boldsymbol{\nabla}$ recently heard - Go! Browse: Artists Albums Playlists Range: $0-\mathrm{C} \boldsymbol{\square}$
Artist: Beatles [band web page] [Play!] Playlist: -New Playlist- $\quad$ [Add tol [View]



## Ground-truth data

- Hard to evaluate Playola's 'accuracy'
o user tests...
- ground truth?
- "Musicseer" online survey/game:
o ran for 9 months in 2002 o> I,000 users, > 20k judgments - http://labrosa.ee.columbia.edu/ projects/musicsim/


## On the run!



The evil store owner says Garrison can get between Rolling Stones, The and ABBA in 5 hops. You are on hop 1 (Rolling Stones, The)!

## Choose the artist most similar to: ABBA

1. Creedence Clearwater Revival
2. Stewart, Rod
3. Seger, Bob
4. Hendrix, Jimi
5. Doors, The
6. Presley, Elvis
7. Clapton, Eric
8. Beatles, The
9. Turner, Tina
10. Big Star
a. Led Zeppelin
b. Dylan, Bob

## "Semantic Bases"

- Describe segment in human-relevant terms
o e.g. anchor space, but more so
- Need ground truth...
o what words to people use?
- MajorMiner game:
- 400 users
- 7500 unique tags
- 70,000 taggings
- 2200 I0-sec clips used
- Train classifiers...

Music Audio Information - Ellis

## MajorMiner

dpwe's score: 342

New clip
Summary
Change password
Admin
Logout
Leaders

## Summary

Your last 10 clips

[^0]
## Music Structure Discovery

- Use the many examples to map out the "manifold" of music audio
O ... and hence define the subset that is music

- Problems
o alignment/registration of data
o factoring \& abstraction
o separating parts?


## Eigenrhythms: Drum Pattern Space

- Pop songs built on repeating "drum loop"
o variations on a few bass, snare, hi-hat patterns

- Eigen-analysis (or ...) to capture variations? - by analyzing lots of (MIDI) data, or from audio
- Applications
- music categorization
o "beat box" synthesis
O insight


## Aligning the Data

- Need to align patterns prior to modeling...

tempo (stretch):
by inferring BPM \& normalizing


Reference pattern (120 BPM)


Original pattern compressed $98 \rightarrow 120$ BPM
downbeat (shift): correlate against 'mean' template


## Eigenrhythms (PCA)

Mean pattern


Eigenrhythm 2


Eigenrhythm 4


Eigenrhythm 1


Eigenrhythm 3


Eigenrhythm 5


- Need 20+ Eigenvectors for good coverage of 100 training patterns ( 1200 dims)
- Eigenrhythms both add and subtract

Lab

## Posirhythms (NMF)

Posirhythm 1


Posirhythm 3


Posirhythm 5


Posirhythm 2


Posirhythm 4



- Nonnegative: only adds beat-weight
- Capturing some structure

Lab

## Eigenrhythm BeatBox

- Resynthesize rhythms from eigen-space



## Melody Clustering

- Goal: Find 'fragments' that recur in melodies
- .. across large music database
o .. trade data for model sophistication

o pitch tracker, or MIDI training data
- Melody fragment representation
o DCT(1:20) - removes average, smoothes detail


## Melody Clustering

- Clusters match underlying contour:



- Some interesting matches:
O e.g. Pink + Nsync

Lab
R

## Beat-Chroma Fragment Codebook

- Idea: Find the very popular music fragments o e.g. perfect cadence, rising melody, ...?
- Clustering a large enough database should reveal these
o but: registration of phrase boundaries, transposition
- Need to deal with really large datasets o e.g. I OOk+ tracks, multiple landmarks in each o but: Locality Sensitive Hashing can help - quickly finds 'most' points in a certain radius
- Experiments in progress...



## Conclusions



- Lots of data
+ noisy transcription
+ weak clustering
$\Rightarrow$ musical insights?


[^0]:    at 1:10 in "Silver Inches" from Enya's album A Day Without Rain Your tags: orchestral, slow, violins Someone else's tags
    (1) at 1:50 in "Ambition" from (Smog)'s album Supper Your tags: country, male, guitar, drums
    Someone else's taqs
    (-) at 4:30 in "Life Form Ends" from The Future Sound of London's albu Lifeforms Disc 2
    Your tags: ambient, electronic, synth, sea, wash, noise
    Someone else's tags
    (-) at 0:00 in "The Road" from Chicago's album Chicago II [Bonus Traci Your tags: horns, saxophone Someone else's tags
    (-) at 2:20 in "Ether" from Geri Soriano-Lightwood/The Baldwin Brothers's album Cooking with Lasers

