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Abstract

We discuss the fusion of speech and phoneme estimates
reliabilities in a multi-stream Automatic Speech
Recognizer (ASR) in order to improve recognition score
in adverse condition. Recently the Full Combination
approach (FC) [1] proposed a decomposition of the full-
band posterior probability for each phoneme into a
reliability weighted sum of corresponding combination
posteriors. Actually we have shown in [2] that
weighting factors in the FC should take into account not
only the speech signal reliability, but also the intrinsic
efficiency of sub-band experts. To tackle this problem
we derive here a new model called ““Posteriors Bias
Prediction"” (PBP) in order to introduce reliability
functions of each combination posteriors. We show that
FC is a particular case of PBP. We show how PBP
allows the integration of sub-stream reliability functions
depending of the Signal to Noise Ratio (SNR) and the
phoneme's class. Tests on telephonic free digits
(Numbers95) under various noises demonstrate that PBP
performs better than FC. We discuss the ameliorations
that could be done to PBP implementation to increase
its robustness to noise interference.

1. Introduction

Multi-band processing paradigm for noise robust ASR
was originally motivated by the observation that human
recognition appears to be based on independent
processing of separate frequency sub-bands [3].

In the context of hybrid multi-band ASR [1], phoneme
posterior probabilities can be estimated from each sub-
band combination and increase ASR robustness to
narrow-band noise [2]. Of the different multi-band
models which have been proposed, only the ““Full
Combination" approach (FC) [1,2] allows us to
consistently overcome the difficult problem of
combining sub-bands recognition, by integrating over
all possible positions of noisy sub-bands.

We develop here some ameliorations of the FC model.
The goal of any ASR system is to reliably detect the
presence of a phoneme at a given time. The most
informative event for recognition is tk. : ““the phoneme
k occures at time t".

Let be gk : ““the phoneme k is detected (according to
Maximum A Posteriori (MAP) criterion) at time t". Let J
be the set of all possible data vector X, and fj="the
recognizer observes only stream j at time t". Because fj
are mutually exclusive and collectively exhaustive we
have :

P(gkiX)=)"  P(qk,/jlX) 1)

(1) is the decomposition used in FC model. Actually one
can substitute gk by tk in (1). In FC model events tk and
gk are collapsed. We propose to analyze in detail the
relation between this two events, so that events tk and
gk are not collapsed. Actually, we will demonstrate that
tk and gk are different, introducing a bias in phoneme’s
estimations.

2. The Posteriors Bias Prediction Model

We have seen that equation (1) is equal to :
PUk1X)=Y _ Pk, fjlX) )
We always have :

P(tk1 X) = Zjej [P(tk, gk, fj| X)+ P(tk, gk, fj1 X)]

Using bayes rule and Xj = X M fj , we have :

P(tk | X) = Z,E, P(fj1 X).[(P(tk | gk, Xj)
— P(tk | gk , X})).P(qk | Xj)+ P(tk | gk, Xj)]

This equation includes :

" (k,Xj) = P(tk | gk, Xj) = the reliability of
positive estimation, and

¢ (k,Xj)=1-P(tk | gk, Xj) = the reliability of
negative estimation.

These reliabilities are correlated with the rate of true
positive and true negative phoneme’s detections. They

completely characterize the performance of any
detector.

Let note @(k, Xj)=(@" +¢@ )k, Xj)—1, then we

see that we get a formula similar to the "Full



Combination” model, but includes a linear

transformation of the posteriors :

P(tk1 X) =
)., PUITX). [0k, X)).P(gk! X)) +1-¢” (k. X))]

This is the PBP model. We show in [4] that FC is an
ideal case of PBP : they are similar if the recogniser
collapses tk and gk, this means that if we consider a
MAP detector, its sensibility and sensibility are equal
to one, so that this detector makes no mistakes, which is
not realistic.

3. Link between reliability functions and voicing

We have shown in [4] that reliability functions
@+(k,Xj) and @ (k,Xj) are SNR dependant.
Actually PBP model enables to optimally link intrinsic
(MAP) and any signal reliabilities like SNR or the
voicing index R which has been developed in [5]. We
will focus here on the use of R, calculated from
normalized autocorrelation pic in the pitch domain of
time frequency cells (of around 128 ms * 700 Hz). R is
calculated only in the 4 sub-bands 1,2,3,4, and then
combined in order to approximate other R sub-streams.
We have shown that R is well correlated with SNR [5].
We approximate R for any sub-stream with the sum of
the pic of the sub-bands included in the sub-stream,
divided by the sum of the energy of each of these sub-
bands. This estimation is well correlated with the direct
sub-stream measure (the correlation minimum equals to
98% over the different stream, with Gaussian white
noise at different SNR over the whole test set of
numbers95).

We then study the reliability functions @ + (k, Xj) and

¢ (k, Xj) mapped from confusion matrices based on

the phoneme detected with the MAP criterion and the
target phoneme, at different R interval and for different
stream on noisy subsets of a development test set (200
utterances with Gaussian white noise at different SNR).
For this first experiment we group phonemes’ class in 3
subsets : Voiced (Voi.), Fricative non voiced (/s,f,th,hh/)
(Fricat) and Plosive non voiced (Plos). (see figures 1
and 2).

We observe in figure 1 and 2 that reliabilities are
phoneme- and stream-dependent. They are also
depending on the automatically estimated voicing index
R. Naturally reliability for Voi. is well correlated with
R. For Silence, reliabilities are always strongly
correlated with R in the case of the negative estimation
(figure 2), but we observe the contrary in case of
positive estimation. We see that these state (representing
around 40% of the phonemes on Numbers95), are
generating very often wrong recognition at low but also

at high (see figure 1) SNR. PBP aims to correct their
estimations using a priori functions of these bias. Non
voiced fricative (Fricat.) are mostly silence when R is
high for High Frequency streams (HF), then they share
nearly the same reliability.
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Figure 1 Q+(k, X)) for the 15 different sub-streams, the

3 phoneme subsets and the different R values. Sub-
streams are noted by the sub-bands they contain (e.g.
134 is the stream containing sub-bands 1, 3 and 4. Full-
band is the stream 1234). R is varying from —0.25 to 1
(abscissa). Reliability (ordinata) is varying from 0O to 1.
We group phonemes in 3 subsets : Voiced (Voi.),
Fricative non voiced (Fricat) and Plosive non voiced
(Plos).
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Figure 2 Q©-(k,Xj) for the 15 different sub-streams,
legend is the same than in figure 1.

In the case of @~ (k, Xj), all the sub-stream functions
are similar. Only silence, for low R differs. In the case
of @+ (k, Xj) and non silence phonemes, we see that



we have similar behaviour for streams (1, 2, 12, 13, 14,
123, 124, 134) which are the Low Frequency (LF)
streams, certainly because speech is mostly conveyed in
LF. The HF streams generate another kind of behaviour.
In particular, the Plos. have different function which is
correlated with the fact that plosives release contains
mostly silence in LF and most of the information is
conveyed in HF.

4. Recognition tests

We can compute the reliability P(fjlX) of any stream j
using R index and the SNR mapping technique as in
[5], or we can consider that any stream is equally useful
(blind model), and that the information about stream

reliability will be given through @+ (k,Xj) and

¢ (k, Xj) functions. We will consider only this second

method for this first implementation of the PBP model.
We choose 1 sub-band for approximately one formant
(see table 1), and we carefully defined the sub-band with
the minimal frequency overlap. All the features are the
JRASTA [6].

sub-band 1 2 3 4

Hz 115 565 1262 | 2122
629 1370 | 2292 | 3769
Table 1:Set up of the 4 sub-bands and the full band in
Hz ( cut off 3dB ) with their respective LPC order and
number of coefficient extracted.

We are using the Numbers 95 database of multi-speaker
US English free-format numbers telephone speech, with
around 50 words, 27 phonemes. The training set is
composed of 3500 utterances, the test set is composed of
200 utterances at various SNR dB : -12 -6 0 6 12 18 dB.
Preliminary noise set is composed of 4 limited band
noise named Bx, 300 Hz large and centred in each sud-
band (x indexes the sub-band). We also use a periodic
mixture of these Bx : each 125 ms, x is regularly picked
up from the sequence [1,2,3,4,4,3,2,1].

Baseline tests were made with a full-band hybrid ASR
in which neural networks with one hidden layer of 1700
units, using a context of 9 consecutive frames,
generates the posterior probabilities P(qklXj) for each of
27 phonemes. Training used the full Numbers95 training
set. During recognition, posterior probabilities divided
by their priors, were passed as scaled likelihoods to a
fixed parameter HMM for decoding. Sub-band posterior
estimations are easily combined [1] to generate sub-
stream posteriors.

GWN | FACT |CAR |B1 |B3 |N.ST.| MEAN

Full (382 |37.8 |33.7 |26.6|30.8|90.6 |42.9
Band

Spect. | 33.7 |41 35.6 [29.238.4|56.3 |39
Sub.

FC 469 |45.6 |44.2 (245(21.7(499 |38.8
blind

FC 473 |45 45 27.1119.3159.8 |40.6
+R

PBP |46.1 |43.7 [42.4 |25.3|21.1|443 |37.1
blind

Table 2 : Word Error Rate (WER) in % average on 200
sentences* 6 levels (-12,-6,0,6,12,18 dB SNR). Col.:
GWN:Gaussian White Noise, factory, car  noises,
Bl(resp B3) narrow banb noise in band 1 (resp
B3),NST: non-stationary noise. Fband= full band
system with Jrasta processing. Spect Sub.=Spectral
Substraction. FC blind= FC with uniform weights,
compared to FC+R using R signal confidence (see [2]).
PBP blind = PBP model using uniform weight, but the
two functions described in figures 1 and 2 . Confidence
interval for the means = +-0.5 at WER=20\%. Partial
recognition of three sub-bands after exclusion of noisy
sub-band 1 or 3 in the case of noise bl or b3 gives 22.7
or 19.0 WER%.
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Figure 3 Details of WER% (ordinata) for the non
stationary noise at different SNR in dB (abscissa) and
the different models : Full band Jrasta, Spectral
Substraction, Full Combination and PBP model using
blind weights and the two functions described in figures
1 and 2.

The HMM for each phoneme used a | to 3 repeated-
state model. No language model was used.

For the full-combination multi-band system a separate
MLP (of identical design to the full-band MLP) was
trained on clean data for each sub-band combination.
Multiple MLP outputs were then merged [1] at the
frame level (which here was also the state level) to give
a single posterior probability for each class.




5. Discusion

We observed in the figure 1 and 2 the well known fact
that a given frequency domain encodes more or less
efficiently the information necessary for phoneme
identification. WER % tables show that PBP performs
in average better than FC model. PBP performance are
detailed in the case of NST noise, showing that PBP is
best at low SNR. We can assume that this is due to the
fact that bias are stronger at low SNR. We can expect
even more improvement if we use different reliability
functions for each phonemes, and signal dependant
weights P(fjIX) (but not equal or “blind” weights like in
this paper).

The key result is that we have different PBP weighting
functions for different phonemes and different streams
and that PBP model integrates them. The architecture of
PBP model is similar to a ‘“correction system”,
described by Shannon in [7] (see fig. 4). During
training, signal and noise, sent and received messages
are observed, allowing us to build the reliability
functions to pass on the “correction data” information
to a correction device during testing. More comments
can be found in [8]
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Figure 4 : Schematic diagram of a correction system
inspired from [7]. During training, signal and noise,
sent and received messages are observed, allowing us to
build the reliability functions. During testing, only the
corrupted signal s' and message M' are known, but the
observer can use the reliability function to pass on the
“correction data” stream information to a correction
device (like our Posteriors Bias Prediction).

6. Conclusion

We analyse in detail the confusion matrices of each
stream in order to characterize the predictive values of
correct estimations (negative or positive) of each
phoneme using the criterion of Maximum a Posteriori
probabilities. We build these predictive value functions
and we show that they are phoneme- and stream-
dependant.

In order to use this information we develop a new
model: the "Posterior Bias Prediction". We show that
the previous "Full Combination Model" is a particular
case of PBP. The PBP model allows us to optimally link
intrinsic reliabilities (based on the MAP criterion) and
extrinsic signal reliability SNR like (e.g. voicing [5]).
We discuss the relation of PBP with the correction
system proposed in [7]. Strong improvement in
robustness of phoneme and word recognition is
expected using more detailed functions, using a
particular reliability function for each phoneme.
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